УДК 542.924:544.47:546.712

МОДИФИЦИРОВАННЫЙ ХЛОРИДОМ МАРГАНЦА (II) ПРИРОДНЫЙ КЛИНОПТИЛОЛИТ В РЕАКЦИИ РАЗЛОЖЕНИЯ ОЗОНА

Ракитская Т.Л.¹*, Труба А.С.^{1,2}, Раскола Л.А.¹, Эннан А.А.²

¹ Одесский национальный университет имени И.И. Мечникова, химический факультет ул. Дворянская, 2, Одесса, 65082, Украина ² Физико-химический институт защиты окружающей среды и человека ул. Преображенская, 3, Одесса, 65086, Украина

Методом импрегнирования по влагоемкости с последующей сушкой при 110 °C до постоянной массы получены образцы клиноптилолита, модифицированные хлоридом марганца (II) (MnCl₂/П-Кл). Природный клиноптилолит и образцы MnCl₂/П-Кл охарактеризованы рентгеновским методом и тестированы в реакции низкотемпературного разложения озона. В зависимости от степени заполнения поверхности клиноптилолита хлоридом марганца (II) формируются разные по составу и активности комплексы.

ВВЕДЕНИЕ

Природные минералы (цеолиты, бентониты, дисперсные кремнеземы и др.) нашли широкое применение как сорбенты тяжелых металлов и паров воды, а также катализаторы реакций многочисленных органического синтеза [1-3]. Как показали исследования последних лет, природные сорбенты оказались перспективными и в качестве носителей катализаторов различного назначения. в которых активной составляющей являются оксиды металлов [4], наночастицы золота [5], соли d-металлов [6] и металлокомплексные соединения [7-9]. Катализаторы последней группы применяются для низкотемпературной очистки воздуха от монооксида углерода, озона и диоксида серы [7]. При этом более подробно изучены катализаторы окисления СО, в своем составе содержащие комплексные соединения Pd(II), Cu(II) и предварительно активированные разными способами природные носители (клиноптилолит, морденит, базальтовые туфы, бентониты, трепелы).

При исследовании кинетики разложения озона установлено, что ацидокомплексы Cu(II) и Co(II), закрепленные на клиноптилолите, проявляют каталитические свойства без предварительной активации носителя [9]. Известно, что катализаторы, содержащие в своем составе Mn(II) или MnO₂, наиболее востребованы для санитарной очистки воздуха от озона (предельно-допустимая концентрация озона в рабочей зоне равна 0.1 мг/м³) [10]. При этом каталитический эффект Mn(II) может быть усилен за счет носителей, например, углеродных материалов [11], непосредственно участвующих в реакции разложения озона.

Целью работы явилось установление закономерностей разложения озона природным и модифицированным хлоридом марганца(II) клиноптилолитом, а также взаимосвязи между степенью заполнения поверхности носителя ионами марганца, кинетическими и стехиометрическими параметрами реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе в качестве носителя комплексов Mn(II) используется природный клиноптилолит (П-Кл) (Закарпатская обл., Сокирницкое месторождение, ТУ У 14.5-00292540.001-2001) следующего химического состава (масс. %): $SiO_2 - 71.5$; $Al_2O_3 - 13.1$; $Fe_2O_3 - 0.9$; $TiO_2 - 0.5$; CaO - 3.44; MgO - 0.68; K_2O -Na₂O - 3.03; массовое соотношение SiO_2/Al_2O_3 составляет 5.5; pH водной вытяжки 7.9; $S_{ya} = 50-65 \text{ m}^2/\text{г}$.

Носитель фракционного состава 0.5-1.0 мм ($d_3 = 0.75$ мм) предварительно промывают дистиллированной водой для удаления пыли, сушат при 110 °C до постоянной массы. Образцы MnCl₂/П-Кл получали методом импрегнирования по влагоемкости с последующими стадиями «созревания» в

* контактный автор *tlr@onu.edu.ua* ХФТП 2013. Т. 4. № 3 течение 20 часов в закрытых чашках Петри и сушки до постоянной массы в воздушной среде при 110 °C.

Для установления фазового состава П-Кл и образцов MnCl₂/П-Кл до и после реакции с озоном использовали метод порошковой рентгенографии с применением плоских препаратов. Тщательно растертые в агатовой ступке образцы в количестве ~ 150 мг наносили равномерно на картонный кружок диаметром 25 мм, предварительно смазанный клеем ПВА.

Рентгенограммы исследуемых образцов в области $8^{\circ} < 2\theta < 60^{\circ}$ получены на приборе ДРОН-3; излучение СиК_а ($\lambda = 1.54178$ Å), напряжение 30 кВ, ток 28 мА. Идентификацию фаз осуществляли с учетом межплоскостных расстояний (d, Å) и относительной интенсивности пиков (I/I₀) в соответствии с данными [12–14].

Кинетику разложения озона образцами МпСl₂/П-Кл изучали в проточной по газу термостатированной (20 °C) установке при условиях (размеры реактора, линейная скорость озоно-воздушной смеси (OBC) u = 3.2 см/c,фракционный состав образцов), когда влиянием макрокинетических факторов на скорость реакции можно пренебречь. ОВС с заданной концентрацией озона получали в озонаторе ИГ-1Ш действием тихого электрического разряда на кислород воздуха. Начальную (С₀,) и конечную ($C_{O_3}^{\kappa}$) концентрации озона в диапазоне от 1 до 1000 мг/м³ анализировали с помощью оптического газоанализатора (модель «Циклон-Реверс») с пределом обнаружения 1 мг/м³. Скорость реакции (W), константу скорости первого порядка по озону (k1) и константу скорости первого порядка (k_{1/2}) на полупревращения время озона $(\tau_{1/2})$ рассчитывали по формулам (1)-(3):

$$W = \frac{\omega(C_{O_3}^{\mu} - C_{O_3}^{\kappa})}{m_{\kappa}}, \text{ моль/(г·c)}$$
(1)

$$k_{1} = \frac{1}{\tau} \ln \frac{C_{O_{3}}^{H}}{C_{O_{3}}^{\kappa}}, c^{-1}$$
(2)

$$k_{1/2} = \frac{0.69}{\tau_{1/2}}, c^{-1}$$
 (3)

где $\omega = 1.66 \cdot 10^{-2}$ – объемный расход OBC, л/с; $C_{O_3}^{\mu}$, $C_{O_3}^{\kappa}$ – начальная и конечная концентрации озона, моль/л; m_{κ} – масса образца, равная 10 г.

Опытное количество озона, вступившего в реакцию (Q_{on} , моль O_3), находили по площади соответствующих озонограмм, построенных в координатах ($C_{O_3}^{\text{H}} - C_{O_3}^{\text{K}}$) – τ . Теоретическое количество озона (Q_{T}), вступившего в реакцию, рассчитывали в соответствии со стехиометрией реакции (4):

$$Mn^{2+} + O_3 + H_2O = MnO_2 + 2H^+ + O_2$$
. (4)

Число каталитических циклов разложения озона определяли из отношения

$$n = Q_{on}/Q_{T}.$$
 (5)

Удельное опытное количество озона, приходящееся на 1 г катализатора, рассчитывали по формуле

$$Q_{y_{\mathcal{I}}} = Q_{on}/m_{\kappa}$$
, моль O_3/Γ . (6)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Из рис. 1 следует, что все образцы являются кристаллическими; дифрактограмма для П-Кл практически полностью совпадает с приводимой в работе [14]. Слабые линии в спектре при $2\theta = 24.577^{\circ}$, 25.775° , 27.535° , 27.825° обусловлены наличием морденита; фаза SiO₂ (α-кварц) идентифицируется по интенсивным пикам при $2\theta = 20.891^{\circ}$ и 26.736° . Основная фаза _ клиноптилолит (Кл) идентифицирована по четырем наиболее интенсивным линиям при $2\theta = 9.841^{\circ}$, 22.462° , 22.799°, 23.604° (табл. 1). Кроме того. другие линии анализировали И спектра, интенсивность которых изменялась при нанесении хлорида марганца (II) до и после реакции образца с озоном.

Результаты анализа изменений, рентгеновских спектрах, происходящих В Модифицирование обобщены В табл. 1. клиноптилолита хлоридом марганца (II) приводит к увеличению интенсивности первой базовой линии при $2\theta = 9.841^{\circ}$; интенсивности двух последующих линий ($2\theta = 22.462^{\circ}$ и 22.799°) практически не изменяются; почти в 6 раз уменьшилась интенсивность пика при $2\theta = 23.604^{\circ}$; обращает внимание увеличение в 5 раз интенсивности очень слабой линии в П-Кл при $2\theta = 35.884^{\circ}$ спектре (это наблюдается только в случае нанесения MnCl₂).

Для линий, относящихся к отражениям от фазы SiO₂ (α-кварц), отмечены следующие изменения: возрастание в 2 раза интенсивности при $2\theta = 20.891^{\circ}$ и ослабление при $2\theta = 26.736^{\circ}$.

Рис. 1. Дифрактограммы природного и химически модифицированных образцов клиноптилолита: *1* – П-Кл; 2 – MnCl₂/П-Кл (до реакции с озоном); 3 – MnCl₂/П-Кл (после реакции с озоном)

Таблица 1. Результаты рентгенофазового анализа природного клиноптилолита (П-Кл) и катализаторов разложения озона MnCl₂/П-Кл

Идентифицируемые фазы		П-Кл			MnCl2/П-Кл до реакции с озоном			MnCl ₂ /П-Кл после реакции с озоном		
		2 0 , град	d, Å	I/I ₀ , %	2 0 , град	d, Å	I/I ₀ , %	20, град	d, Å	I/I ₀ , %
1	Кл	9.841	8.987	78	9.825	9.003	100	9.820	9.025	100
2	Кл	22.462	3.958	62	22.386	3.971	63	22.294	3.987	59
3	Кл	22.799	3.900	40	22.775	3.904	37	22.693	3.918	39
4	Кл	23.604	3.769	36	23.511	3.777	6	23.538	3.779	7
5	Кл	28.214	3.163	20	28.148	3.170	30	28.099	3.176	18
6	Кл	35.884	2.502	6.5	35.884	2.502	32	_	_	_
7	SiO ₂ (α-кварц)	20.891	4.252	16	20.898	4.251	34	20.825	4.262	11
8	SiO ₂ (α-кварц)	26.736	3.334	100	26.660	3.343	83	26.594	3.352	85
9	MnCl ₂ ·4H ₂ O	_	_	_	35.884	2.502	32	_	_	_
10	Mn_2O_3	_	_	_	_	_	_	23.145	3.843	5
11	Mn_2O_3	_	_	-	-	_	_	33.455	2.678	4
12	MnO ₂	_	_	_	_	_	_	39.436	2.429	4

По данным табл. 1 в области 20 от 10.0° до 30.0° , в которой должны проявляться наиболее интенсивные пики фаз MnCl₂·xH₂O (x = 0, 1, 2, 4), такие отражения отсутствуют. На основании этого можно заключить, что на поверхности клиноптилолита хлорид марганца не кристаллизуется; марганец (II) локализуется на определенных гранях Кл и α -SiO₂.

После реакции образца MnCl₂/П-Кл с озоном относительная интенсивность первой базовой линии Кл остается без изменения;

интенсивность отражения при $2\theta = 35.884^{\circ}$ понизилась настолько, что практически в спектре эта линия не обнаруживается. Для α -SiO₂ фазы интенсивность пика при $2\theta = 20.898^{\circ}$ понижается И становится примерно такой, как для исходного П-Кл. Появившиеся в спектре новые линии можно было бы отнести к фазам Mn₂O₃ и MnO₂ (табл. 1), однако эти отражения очень слабые, по сравнению с теми, что приводят для указанных кристаллических фаз [1].

Исследована кинетика разложения озона образцом $MnCl_2/\Pi$ -Кл ($C_{MnCl_2} = 2.4 \cdot 10^4$ моль/г) при концентрации озона в OBC равной 100, 200 и 300 мг/м³. Типичные кинетические кривые разложения озона (рис. 2) получены при условии достижения полупревращения озона, т.е. $C_{O_3}^{\kappa} = \frac{1}{2} C_{O_3}^{\mu}$.

Из табл. 2 видно, что с увеличением С₀^н

линейно возрастает начальная скорость реакции, что доказывает первый порядок по озону; константы скорости реакции первого порядка, из-за нулевого начального участка, определить невозможно; константа скорости k_{1/2}, рассчитанная по времени полупревращения озона, не является постоянной величиной, что свидетельствует о протекании реакции по радикально-цепному механизму.

Таблица 2. Влияние С^н₀₃ на кинетические и стехиометрические характеристики реакции разложения озона образцами MnCl₂/П-Кл при С_{MnCl₂} = 2.4·10⁻⁴ моль/г

$C_{O_3}^{H}$, Mg/m ³	₩ _н ·10 ¹⁰ , моль/(г·с)	$\tau_{1/2}, c$	$k_{1/2} \cdot 10^5, c^{-1}$	Q _{уд} ·10 ⁵ , моль О ₃ /г	n
100	35	64800	1.06	18.5	0.77
200	70	48600	1.42	26.8	1.11
300	105	23400	2.95	19.0	0.79

Изучено влияние содержания MnCl₂ от $1.2 \cdot 10^{-7}$ до $2.4 \cdot 10^{-4}$ моль/г в образцах MnCl₂/П-Кл на кинетику разложения озона. Наибольшая продолжительность опыта составляла 800–1000 мин. На рис. 3 показан только фрагмент протяженностью 360 мин. Кинетическая кривая *I* демонстрирует разложение озона непосредственно носителем. Видно, что концентрация озона на выходе из реактора быстро нарастает и уже через 20 мин $C_{O_3}^{\kappa} = C_{O_3}^{\mu}$. После модифицирования клиноптилолита хиорилом.

хлоридом марганца (II) кинетика разложения озона изменяется. При $C_{MnCl_2} \ge 1.2 \cdot 10^{-5}$ моль/г на кинетических кривых появляются участки, где озон не обнаруживается; продолжительность такого участка достигает 60 мин при $C_{MnCl_2} = 2.4 \cdot 10^{-4}$ моль/г (кривая 7). Нарастание Со, во времени также определяется содержанием хлорида марганца. В последнем случае даже через 1000 мин пропускания ОВС через $C_{O_3}^{\kappa} = 40 \text{ MF/M}^3$, катализатор т.е. степень превращения озона остается ниже 50 %.

Табл. 3 показывает, что с увеличением концентрации хлорида марганца (II) возрастает количество разложившегося озона, число каталитических циклов при этом уменьшается. Уменьшение n с увеличением содержания Mn(II) в образцах обусловлено значительным понижением соотношения $C_{O_3}^{\mu}/C_{Mn(II)}$ и является общим для реакций разложения озона в присутствии ионов металлов [9].

Таблица 3. Влияние C_{MnCl2} на кинетические и стехиометрические параметры реакции разложения озона образцами MnCl₂/П-Кл (C^H_{O3} = 100 мг/м³)

С _{Мп(II)} ·10 ⁵ , моль/г	α*	₩ _н ·10 ¹⁰ , моль/(г·с)	$k_1 \cdot 10^3, c^{-1}$	Q _{уд} ∙10 ⁵ , моль О ₃ /г	n
0.012	0.007	29.8	1.6	0.2	14.2
0.12	0.07	31.8	2.8	0.5	4.4
1.2	0.7	35.0	_	1.7	1.4
6.0	3.75	35.0	_	6.3	1.1
12.0	7.0	35.0	_	11.1	0.9
24.0	14.0	35.0	_	18.5	0.7

* – Степень заполнения поверхности П-Кл ионами Mn(II) $\alpha = C_{Mn(II)}/\Gamma_{\infty}$

Константы скорости реакции первого порядка, рассчитанные по начальному ниспадающему участку кинетической кривой (первые 10 мин от начала опыта), для низких концентраций хлорида марганца (II) возрастают. В других случаях рассчитать эти константы нельзя.

Для характеристики сформированного на поверхности клиноптилолита слоя из ионов марганца(II) И понимания механизма образования поверхностных комплексов использовали ранее полученные данные об адсорбции клиноптилолитом Mn(II) ИЗ водного раствора хлорида марганца [15]. В уравнением соответствии Ленгмюра с предельной адсорбции величина для $\Gamma_{\infty} = 1.6 \cdot 10^{-5}$ моль/г; в марганца(II) ходе равновесное адсорбции значение pН понижается с 6.5 до 6.0. При сопоставлении значений α (табл. 3) и данных по кинетике разложения озона (рис. 3) видно, что при α < 1 образцы MnCl₂/П-Кл быстро теряют активность, а при формировании полимолекулярных слоев, когда основная масса хлорида марганца сосредоточена на внешней поверхности клиноптилолита, нарастание конечной концентрации озона происходит медленно. В соответствии общими с области представлениями [16], В монослойного заполнения поверхности клиноптилолита формируются моноядерные, так называемые "внутрисферные" комплексы по ионообменному механизму:

$$[\equiv \text{T-OH}] + \text{Mn}^{2+} \leftrightarrow [\equiv \text{T-OMn}]^{+} + \text{H}^{+}, \qquad (6)$$

$$2[\equiv T-OH] + Mn^{2+} \leftrightarrow [\equiv (T-O)_2Mn] + 2H^+.$$
(7)

На протекание таких реакций указывает уменьшение pH раствора после адсорбции марганца(II) при значениях его равновесных концентраций, соответствующих образованию монослоя. В области полислойной адсорбции на внешней поверхности носителя образуются хлорокомплексы марганца (II), связанные с функциональной группой носителя через молекулу воды [17]:

 $[\equiv T-OH](H_2O)_x + MnCl_2 \leftrightarrow$

$$\leftrightarrow \equiv \text{T-OH}(\text{H}_2\text{O})_{x-1} \cdot \text{MnCl}_2 + \text{H}_2\text{O}.$$
 (8)

Отличающиеся по составу поверхностные комплексы Mn(II) проявляют разную каталитическую активность при разложении озона. Увеличение активности образованных реакции (8) комплексов обусловлено по наличием хлорид-ионов, ускоряющих разложение озона [9]; молекулы воды участвуют в реакции (4), по которой формируются оксидные формы марганца, выступающие в роли "вторичного" катализатора меньшей активности, но обеспечивающие стационарное разложение озона (рис. 4). Хотя в ходе реакции наблюдается интенсивное буровато-коричневое окрашивание образца, рентгеновские спектры (рис. 1, табл. 1) фиксировали появление лишь нескольких новых пиков, которые условно можно отнести к оксидным фазам переменного состава MnO₂, Mn₂O₃. Полученные результаты указывают на то, что на поверхности клиноптилолита образуется аморфный диоксид марганца, который прочно удерживается на поверхности носителя и не десорбируется водой при 20 °С. Подтверждением этого являются следующие результаты. Образцы MnCl₂/П-Кл с содержанием хлорида марганца равным $1.2 \cdot 10^{-4}$ моль/г (рис. 4, кривая *I*) и $2.4 \cdot 10^{-4}$ моль/г (рис. 4, кривая 3) после реакции с озоном промывали дистиллированной водой и сушили при 110 °С до постоянной массы. Образцы сохраняли буровато-коричневое окрашивание и обеспечивали через определенное время такое же стационарное разложение озона, как И исходные катализаторы.

Рис. 4. Изменение конечной концентрации озона Со, во времени т при его разложении образцами MnCl₂/П-Кл исходными (1, 3) и после промывки водой (2, 4) при $C_{\Omega}^{H} = 100 \text{мг/м}^{3}: 1$ – исходный образец $(C_{Mn(II)} = 1.2 \cdot 10^4 \text{ моль/г}); 2 - после промывки$ водой; 3 _ исходный образец $(C_{Mn(II)} = 2.4 \cdot 10^{-4} \text{ моль/г});$ 4 после промывки водой

Образец, в котором первоначальное содержание MnCl₂ увеличено в два раза, а, следовательно, и содержание окисленной формы после реакции с озоном возрастает, продемонстрировал более высокую активность – $C_{O_3}^{\kappa}$ в стационарном режиме составляет 40 мг/м³.

выводы

Методом импрегнирования по влагоемкости получены образцы клиноптилолита MnCl₂/П-Кл с содержанием хлорида марганца от $1.2 \cdot 10^{-7}$ 2.4·10⁻⁴ моль/г. до Рентгеновским методом установлено, что даже при $C_{MnCl_2} = 2.4 \cdot 10^{-4}$ моль/г на поверхности клиноптилолита кристаллические фазы MnCl₂·xH₂O (x = 0, 1, 2, 3, 4) не образуются; марганец (II) локализуется на определенных гранях клиноптилолита и примесной фазы α-SiO₂. В рентгеновском спектре образца MnCl₂/П-Кл $2\theta = 35.884^{\circ}$ интенсивная полоса при (d = 2.502 Å), которая очень слабая в спектре П-Кл, практически полностью исчезает после озонирования образца. Визуальные наблюдения за изменением окраски озонированных образцов указывают на формирование оксидных фаз марганца, хотя в рентгеновском спектре четкого подтверждения их формирования не обнаружено. Сделан вывод, что в ходе реакции озона с образцами MnCl₂/П-Кл образуются аморфные оксидные формы марганца.

При исследовании кинетики разложения озона модифицированными образцами клиноптилолита установлено, что непосредственный вклад носителя в кинетику реакции – минимальный; кинетические и стехиометрические параметры реакции определяются содержанием хлорида марганца (II) и концентрацией озона в озоно-воздушной смеси. Удельное количество озона, определяемое на момент прекращения подачи озоно-воздушной смеси в реактор, возрастает с увеличением содержания Mn(II) в составе катализатора.

Для анализа результатов по влиянию содержания хлорида марганца на кинетику разложения озона привлечены данные об адсорбции марганца (II) клиноптилолитом, что позволило сделать вывод о формировании разных по составу поверхностных комплексов в области равновесных значений концентрации хлорида марганца (II), соответствующих моно- и полислойной адсорбции. В первом случае по ионообменному механизму формируются комплексы [≡T-OMn]⁺ или [≡(T-O)₂Mn], во втором – комплекс состава ≡T-OH(H₂O)_{x-1}·MnCl₂, который намного активнее первого комплекса.

Модифікований хлоридом мангану (II) природний клиноптилоліт в реакції розкладання озону

Ракитська Т.Л., Труба А.С., Раскола Л.А., Еннан А.А.

Одеський національний університет імені І.І. Мечникова, хімічний факультет вул. Дворянська, 2, Одеса, 65082, Україна, tlr@onu.edu.ua Фізико-хімічний інститут захисту навколишнього середовища і людини вул. Преображенська, 3, Одеса, 65026, Україна

Методом імпрегнування за вологоємністю з подальшою сушкою при 110 °С до сталої маси одержано зразки клиноптилоліту, модифіковані хлоридом мангану(ІІ) (MnCl₂/П-Кл). Природний клиноптилоліт та зразки MnCl₂/П-Кл охарактеризовані рентгенівським методом і тестовані в реакції низькотемпературного розкладання озону. В залежності від ступеня заповнення поверхні клиноптилоліту хлоридом мангану (ІІ) формуються різні за складом і активністю комплекси.

Natural clinoptilolite modified with manganese (II) chloride in the reaction of ozone decomposition

Rakitskaya T.L., Truba A.S., Raskola L.A., Ennan A.A.

Mechnickov National University of Odessa, Faculty of Chemistry 2 Dvoryanskaya Str., Odessa, 65082, Ukraine, tlr@onu.edu.ua Physicochemical Institute of Environment and Human Protection 3 Preobrazhenskaya Str., Odessa, 65026, Ukraine

Samples of clinoptilolite modified with manganese(II) chloride ($MnCl_2/N$ -CLI) have been obtained by incipient wetness impregnation method with subsequent drying at 110 °C until constant weight. Natural clinoptilolite and $MnCl_2/N$ -CLI samples have been characterized by X-ray method and tested in the reaction of low-temperature ozone decomposition. Dependent on occupancy of clinoptilolite surface by manganese(II) chloride, manganese (II) complexes with various composition and activity are formed.

Keywords: clinoptilolite, manganese (II) chloride, impregnation, ozone decomposition, X-ray analysis

ЛИТЕРАТУРА

- 1. *Тарасевич Ю.И*. Природные сорбенты в процессе очистки вод. Киев: Наукова думка, 1981. 208 с.
- Nagendrappa G. Organic synthesis using clay and clay-supported catalysts // Appl. Clay Sci. -2011. - V. 53, N 2. - P. 106–138.
- Zhou C.H. An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis // Appl. Clay Sci. – 2011. – V. 53, N 2. – P. 87–96.
- 4. *Бражник Д.В., Зажигалов В.А., Григорян Р.Р. и др.* Использование природных цеолитов

для создания катализаторов нейтрализации газовых выбросов // Энерготехнологии и ресурсосбережение. – 2009. – № 1. – С. 27–32.

- Garriazo J.G., Martinez L.M., Odriozola J.A. et al. Gold supported on Fe, Ce, and pillared bentonites for CO oxidation reaction // Appl. Catal. B: Environ. – 2007. – V. 72, N 1–2. – P. 157–165.
- 6. *Rhodes C.N., Brown D. R.* Surface properties and porosities of silica and acid-treated montmorillonite catalyst supports: influence on activities of supported ZnCl₂ alkylation

catalysts // J. Chem. Soc. Faraday Trans. – 1993. – V. 89, N 9. – P.1387–1391.

- Ракитская Т.Л., Киосе Т.А., Волкова В.Я., Эннан А.А. Использование природных алюмосиликатов Украины для разработки новых металлокомплексных катализаторов очистки воздуха от газообразных токсичных веществ // Энерготехнологии и ресурсосбережение. – 2009. – № 6. – С. 18–23.
- Rakitskaya T.L., Kiose T.A., Vasylechko V.O. et al. Adsorption-desorption properties of clinoptilolites and the catalytic activity of surface Cu(II)-Pd(II) complexes in the reaction of carbon monoxide oxidation with oxygen // Chem. of Metals of Alloys. – 2011. – V. 4, N 3–4. – P. 213–218.
- Ракитская Т.Л., Раскола Л.А., Труба А.С. и др. Каталитическое разложение озона закрепленными на природном клиноптилолите ацидокомплексами кобальта (II) // Вопросы химии и химической технологии. – 2011. – № 2. – С. 118–123.
- 10. *Oyama* S.T. Chemical and catalytic properties of ozone // Catal. Rev. 2000. V. 42, N 3. P. 279–322.
- 11. *Rakitskaya T.L., Bandurko A.Yu., Ennan A.A. et al.* Low-temperature catalytic decomposition of ozone microconcentrations by carbon

fibrous materials // Advances Environ. Reserch. -2000. - V. 3, N 4. - P. 472-487.

- Treacy M.N.J., Higgins J.B. Collection of simulated XRD powder patterns for zeolites. – Amsterdam: Elsevier, 2001. – 586 c.
- 13. *Миркин Л.И.* Справочник по рентгеноструктурному анализу поликристаллов. – Москва: Физматиздат, 1960. – 326 с.
- Korkuna O., Leboda R, Skubiszewska-Zieba J. et al. Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite // Micropor. Mesopor. Mater. – 2006. – V. 87, N 3. – P. 243–254.
- 15. Ракитская Т.Л., Раскола Л.А., Киосе Т.А. и др. Адсорбция ионов 3d-металлов природным и кислотно-модифицированным клиноптилолитом // Вісн. Одеськ. нац. ун-ту. Хімія. – 2010. – Т. 15, вип. 3. – С. 85–91.
- Doula M.K., Ioannou A. The effect of electrolyte anion on Cu adsorption–desorption by clinoptilolite // Micropor. Mesopor. Mater. - 2003. – V. 58, N 2. – P. 115-130.
- Ракитская Т.Л., Эннан А.А. Фосфин. Физико-химические свойства и практические аспекты улавливания: монография. – Одесса: Астропринт, 2012. – 208 с.

Поступила 20.02.2013, принята 17.06.2013