УДК 544.47

С.В. Прудіус, Н.М. Вислогузова, В.В. Брей

КОНВЕРСІЯ *D*-ФРУКТОЗИ В ЕТИЛЛАКТАТ НА SnO₂-ВМІСНИХ КАТАЛІЗАТОРАХ

Інститут сорбції та проблем ендоекології Національної академії наук України вул. Генерала Наумова, 13, Київ, 03164, Україна, E-mail: brei@ukr.net

Дослідження спрямовано на пошук ефективних каталізаторів одержання етиллактату з фруктози як поновлювальної сировини. Методом просочування різних носіїв синтезовано серію SnO2-вмісних каталізаторів для трансформації 13 % розчину фруктози в 98 % етанолі при 160 °С протягом 3 год в стаціонарних умовах з застосуванням автоклавів (60 об/хв). Продукти реакції аналізували за допомогою методу ¹³С ЯМР спектроскопії. Наведено текстурні характеристики, сила і концентрація кислотних та основних центрів синтезованих змішаних оксидів. Всі зразки характеризуються розвиненою поверхнею – 90–380 $m^2/2$, достатньо великим об'ємом пор – 0.5–0.95 с $m^3/2$ та широким розподілом пор за діаметром – 10–20 нм. Показано, що на кислотних SnO $_2$ та SnO $_2$ /SiO $_2$ оксидах спостерігається дегідратація фруктози до 5-гідроксиметилфурфуролу, левулінової та мурашиної кислот та їх естерів. Основний 10SnO₂/MgO-ZrO₂ змішаний оксид сприяє конверсії фруктози в бік утворення 1-гідрокси-2-бутанону, гідроксиаиетону, етилпропіонату та етилформіату. Зразки SnO₂/ZrO₂-TiO₂ каталізують дегідратацію фруктози з конверсією більш ніж 90 %, в результаті якої майже з 77-90 % селективністю утворюється 5-гідроксиметилфурфурол. Нанесення SnO $_2$ на Al_2O_3 призводить до значного підвищення виходу цільового продукту – етиллактату. Так, 20SnO₂/Al₂O₃ каталізатор забезпечує 97 % конверсію фруктози з 49 % виходом етиллактату. Знайдено, що допування SnO2/Al2O3 іонами цинку призводить до утворення на поверхні змішаного оксиду слабких основних центрів з H_{0max} =+7.2. При цьому на каталізаторі 10SnO₂-5ZnO/Al₂O₃ підвищується селективність утворення етиллактату до 56 % при 100 % конверсії фруктози. Обговорюється схема перетворення фруктози до етиллактату на кислотних ^{IV}Sn⁴⁺ L-центрах. Одержані результаті свідчать, що реакцію альдольної деконденсації фруктози, як першу стадію утворення етиллактату, каталізують кислотні ^{IV}Sn⁴⁺ L-центри. Також ці центри ініціюють ізомеризацію геміацеталю піровиноградного альдегіду до етиллактату.

Ключові слова: SnO₂-вмісні каталізатори, фруктоза, етиллактат, 5-гідроксиметилфурфурол

ВСТУП

Етиллактат, який одержують з молочної кислоти і етанолу, використовують як екологічно прийнятний розчинник, ЩО біорозкладається, в побутовій хімії, а також в харчовій промисловості [1-3]. Зараз етиллактат розглядають як вихідну сировину для одержання мономерного лактиду та етилакрилату [3], тому значна увага приділяється альтернативних пошуку способів його одержання [4–9]. Певний прогрес було досягнуто синтезі У алкіллактатів з дигідроксиацетону [4] та гліцерину [5]. Так, в роботі [4] показано, що амфотерний оксид ZrO₂-TiO₂ забезпечує утворення етиллактату з селективністю 80-90 % з дигідроксиацетону при 140 °С і 1.0 МРа при навантаженні на каталізатор 4 ммоль $C_3H_6O_3/\Gamma_{\text{кат}}/$ год. В роботі [5] досліджено прямий синтезу етиллактату з

© С.В. Прудіус, Н.М. Вислогузова, В.В. Брей, 2019 максимальний вихід етиллактату (75%) спостерігається на CeO₂/Al₂O₃-каталізаторі з вмістом діоксиду церію 5 мас. % при 230 °C та мольному співвідношенні кисень : гліцерин = 1 : 2. Основний прорив в синтезі алкіллактатів з моношукрів із відтворювальної рослинної

гліцерину і етанолу та знайдено,

що

з моноцукрів із відтворювальної рослинної сировини було зроблено у 2010 році Холмом та співроб. [6]. В результаті прямої безперервної (160 °С, 20 год) конверсії гексоз - глюкози та фруктози - було одержано метиллактат з виходом 44 % з використанням Sn-Beta цеоліту як каталізатора. Іони Sn⁴⁺ в цеолітній ґратці здатні координувати як гідрокси, так і кетогрупи фруктози, тим самим полегшуючи ретроальдольне розщеплення між С3 і С4 атомами [6]. В роботі [7] тестували мезопористий Sn-Si-МСМ-41 оксид для цієї реакції, який забезпечив трохи менший (до 32%) вихід метиллактату. В роботах [8, 9] показано, що використання Sn-цеолітів з меншим вмістом Бренстеда необхідним центрів € для отримання високого виходу метиллактату. Метиллактат з виходом 75 % одержали з сахарози на Sn-β каталізаторі при 170 °С при в реакційну систему додаванні певної кількості лужних карбонатів задля зменшення бренстедівської кислотності [8]. В роботі [9] показано, шо на Zn-Sn-β каталізаторі без додавання солей лужних 100 % металів майже сахарози перетворюється в молочну кислоту з виходом 54 % протягом 2 год при 190 °С.

В даній роботі представлено результати з трансформації етанольних розчинів фруктози в етиллактат на нанесених Sn-вмісних оксидах.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА

Нанесені Sn-вмісні каталізатори було одержано методом просочення. За цим методом водний розчин солей SnCl₄·4H₂O, $Zn(NO_3)_2 \cdot 6H_2O_1$ $(NH)_6Mo_7O_{24} \cdot 4H_2O$ та 1:1.5 цитратної кислоти (співвідношення змішували пілготовленим Mac.) 3 ло модифікування носієм та залишали на добу, після чого піддавали термообробці при 120 °C протягом 12 год. Як носії використовували гранульований γ -Al₂O₃ (виробництво НТЦ «Алвіго»), кремнезем SiO₂ (КСКГ, виробництво Китай), змішані оксиди MgO-ZrO₂ [10] та ZrO₂-TiO₂ [4]. Для просочування застосовували фракцію 0.5-2.0 мм попередньо висушених при 250 °С гранул Після висушування носія. зразки прожарювали при 550 °C 2 год.

Питома поверхня, середній діаметр та об'єм пор зразків розраховано з ізотерм адсорбції-десорбції азоту (Quantachrome Nova 2200e Surface Area and Pore Size Analyser) методом БЕТ.

Силу кислотних та осно́вних центрів оксидів в термінах функції Гаммета H₀ визначали за стандартною методикою із застосуванням відповідних індикаторів Гаммета (Aldrich) [11]. Для визначення загальної концентрації кислотних (осно́вних) центрів використовували метод зворотного титрування *н*-бутиламіну (бензойної кислоти), адсорбованих на поверхні зразків, розчином соляної кислоти (гідроксиду калію) в присутності індикатора бромтимолового синього [11].

Як реакційну суміш використовували 13 % розчин фруктози (ч) в 98 % етанолі. Реакцію проводили автоклавах в 3 тефлоновими вкладишами (25 мл) при обертанні зі швидкістю 60 об/хв протягом 3 год при 160 °С. Конверсію фруктози та селективність (мол %) за продуктами реакції ¹³C ЯМР розраховували за спектрами Bruker Avance (спектрометр 400). Для віднесення спостережуваних ліній використовували базу спектрів даних органічних сполук (SDBS, National Institute of Advanced Industrial Science and Technology, Japan, www.aist.go.jp).

РЕЗУЛЬТАТИ ТА ЇХНЄ ОБГОВОРЕННЯ

В табл. 1 наведено текстурні характеристики, сила і концентрація кислотних та осно́вних центрів синтезованих змішаних оксидів.

Всі носії характеризуються розвиненою поверхнею 90-380 м²/г та достатньо великим середнім діаметром пор 10-20 нм (табл. 1). Лослідження кислотно-основних властивостей носіїв показало, що MgO-ZrO₂ з співвідношенням Mg:Zr = 4:1 – це сильна тверда основа з H₋ <+17.2 [10], γ-Al₂O₃ має $H_0 \ge +3.3$ [12], ZrO₂-TiO₂ з співвідношенням амфотерний Ti:Zr = 3:1_ оксид. який характеризується наявністю як слабкокислотних, так і слабко-основних центрів [4], а SiO₂ - кислотний оксид (табл. 1). SnO₂ є слабким кислотним оксидом (H₀>+1.5) з порівняно невисоким вмістом кислотних центрів на його поверхні (0.4 ммоль/г), також він характеризується невеликими питомою поверхнею у 39 м²/г та об'ємом пор (табл. 1).

Нанесення діоксиду олова на оксидні носії дає змогу одержати зразки, що значно відрізняються за кислотно-основними характеристиками. Зразок 10SnO₂/MgO-ZrO₂ має помірну осно́вність (H₋ ≤+9.3) порівняно сильно основним MgO-ZrO₂ носієм. 3 Невелика кількість SnO₂ (5%) перетворює амфотерний ZrO₂-TiO₂ в слабко-кислотний з концентрацією кислотних центрів 1.4 ммоль/г, тоді як додавання 20 % SnO₂ підвищує концентрацію таких центрів до 2.1 ммоль/г. Також підвищується сила кислотних центрів та їх концентрація при нанесенні SnO2 на Al₂O₃ i SiO₂ (табл. 1).

Результати тестування синтезованих SnO₂-вмісних оксидів у процесі конверсії фруктози до етиллактату наведено в табл. 2. Так, без каталізатора в вищезазначених умовах експерименту спостерігається незначна дегідратація фруктози до 5-гідроксиметилфурфуролу (5-ГМФ), а фруктоза існує у вигляді суміші таутомерів β -D-фруктопіранози і β -D-фруктофуранози.

	Склад -	Структур	оні характе	Кислотно-основні характеристики		
эразок		$S_{\text{пит}}, \mathrm{m}^2/\mathrm{f}$	V _{пор} , см ³ /г	r _{cep} , HM	$H_0(H)_{\rm max}$	С _{центрів} , ммоль/г
SnO ₂	_	39	0.07	3.6	+1.5	0.4
Al_2O_3	_	290	0.82	5.1	+3.3	1.2
SiO ₂	_	380	0.97	5.4	-3.0	1.7
MgO-ZrO ₂	Mg: $Zr = 4:1$	94	0.52	11.1	+17.2	1.3
ZrO ₂ -TiO ₂	Ti:Zr = 3:1	260	0.35	5.4	+1.5(+7.2)	0.5(0.7)
10SnO ₂ /MgO-ZrO ₂	10 % SnO ₂	90	0.52	11.4	+9.3	0.7
5SnO ₂ /ZrO ₂ -TiO ₂	5 % SnO ₂	260	0.33	5.5	+1.5	1.4
20SnO ₂ /ZrO ₂ -TiO ₂	20 % SnO ₂	240	0.33	5.3	+1.5	2.1
10SnO ₂ /SiO ₂	10 % SnO ₂	375	0.95	5.2	-3.0	1.7
20SnO ₂ /SiO ₂	20 % SnO ₂	370	0.95	5.1	-3.0	2.3
$10SnO_2/Al_2O_3$	10 % SnO ₂	250	0.67	5.7	+1.5	1.3
$20SnO_2/Al_2O_3$	20 % SnO ₂	228	0.62	5.4	+1.5	1.5
$25SnO_2/Al_2O_3$	25 % SnO ₂	240	0.62	5.1	+1.5	1.8
$10SnO_2-5ZnO/Al_2O_3$	10 % SnO ₂ , 5 % ZnO	232	0.65	5.6	+3.3(+7.2)	1.3(0.6)
$10SnO_2$ - $5MoO3/Al_2O_3$	10 % SnO ₂ , 5 % MoO ₃	230	0.63	5.6	+3.3(+7.2)	1.3(0.2)

	<u> </u>	, .			
Таблиця I.	Структурні та	кислотно-основн1	характеристики	застосованих	каталізаторів

Таблиця 2. Склад продуктів перетворення фруктози на різних каталізаторах*

	Каталізатор	Конверсія фруктози.	Склад продуктів реакції, моль%				Вихід
		%	ЕЛ	5-ГМФ	Фруктоза	IP	— ЕЛ, %
1	_	27	_	4	73	23	_
2	SnO ₂	100	2	85	_	13	2
3	$5 \text{SnO}_2/\text{ZrO}_2$ -TiO ₂	93	_	90	7	3	_
4	$20SnO_2/ZrO_2$ -TiO ₂	94	7	77	6	10	7
5	10SnO ₂ /MgO-ZrO ₂	100	_	_	—	100	_
6	$10SnO_2/SiO_2$	90	51	26	10	13	46
7	$20 \text{SnO}_2/\text{SiO}_2$	92	42	43	8	7	39
8	$10SnO_2/Al_2O_3$	95	34	37	5	24	32
9	$20SnO_2/Al_2O_3$	97	51	37	3	9	49
10	$25 SnO_2/Al_2O_3$	95	34	58	5	3	32
11	20SnO ₂ /Al ₂ O ₃ **	100	61	34	—	5	61
12	10SnO ₂ -5MoO3/Al ₂ O ₃	100	42	30	_	28	42
13	$10 \text{Sn}\overline{\text{O}_2\text{-}5\text{ZnO}/\text{Al}_2\text{O}_3}$	100	56	14	_	30	56

* Умови реакції: 160 °C, 3 год, 1.5 г фруктози, 0.68 г каталізатора, 10 г 98 % етанолу;

ЕЛ – етиллактат, 5-ГМФ – 5-гідроксиметилфурфурол, IP – інші продукти.

** до 10 г 98 % етанолу додавали 3 мг $\rm K_2CO_3$

На чистому SnO₂ при температурі 160 °C відбувається 100 % конверсія фруктози з утворенням в основному продуктів кислотної

дегідратації, таких як 5-гідроксиметилфурфурол (табл. 2). Також утворюються левулінова, мурашина кислоти та їх естери, як це теж спостерігалось у роботі [13]. Зразок 10SnO₂/MgO-ZrO₂ сприяє конверсії фруктози в бік утворення 1(або 3)-гідрокси-2бутанонів, гідроксиацетону, етилпропіонату та етилформіату, що також спостерігали в роботі [14]. При цьому після відкривання охолодженого автоклаву спостерігалося виділення CO₂, який утворював надмірний тиск.

Зразки 5SnO₂/ZrO₂-TiO₂ та 20SnO₂/ZrO₂-TiO₂ каталізують дегідратацію фруктози, в результаті якої з 77–90 % селективністю утворюється 5-гідроксиметилфурфурол (табл. 2). Невелика кількість етиллактату з'являється в продуктах реакції тільки при підвищенні концентрації діоксиду олова на поверхні ZrO₂-TiO₂ зразка (табл. 2).

Досить висока селективність за цільовим етиллактатом (51–56 %) спостерігається на SnO₂/Al₂O₃ та SnO₂/SiO₂ каталізаторах при конверсії фруктози >90 % (табл. 2). Проте, для цих зразків відбувається утворення значної кількості, понад >26 %, 5-гідроксиметилфурфуролу в результаті дегідратації фруктози на кислотних центрах, механізм якої є добре відомим [15].

Відомо також [15, 16], що кислотні *L*-центри каталізують альдольну деконденсацію фруктози до гліцеральдегіду і дигідроксиацетону у м'яких умовах за температури не нижче 140 °С. Далі, на кислотних центрах відбувається перегрупування дигідрокисацетону у гліцериновий альдегід, який участю протонів за каталізатора відщеплює воду з утворенням піровиноградного альдегіду метилгліоксалю [15, 16]. Метилгліоксаль в етанолу перетворюється присутності V геміацеталь. Подальшій ізомеризації геміацеталю піровиноградного альдегіду в етиллактат сприяють як основні центри каталізатора, так і, за результатами [15], кислотні центри Льюїса. Остання стадія перебігає внутрішньомолекулярним за перегрупуванням Канніццаро [17]. Відбувається так званий 1,2-гідридний зсув між вуглецем геміацеталю та суміжним карбонільним вуглецем 3 одержанням термодинамічно більш стабільного естеру [16].

Недавні дослідження [8, 18] показали, що збільшення pH реакційного розчину в певному діапазоні може ефективно стримувати дегідратацію гексоз поліпшувати вихід лактату. Тому нами було додано до початкового розчину етанолу невелику кількість (0.03 мас. %) карбонату калію. Зa цих умов на каталізаторі 20SnO₂/Al₂O₃ при 100 % конверсії фруктози спостерігається зменшення кількості продуктів дегідратації та значно підвищується селективність за етиллактатом з 51 до 61 %, тобто на початку реакції існуюча конкуренція між дегідратацією фруктози та її деконденсацією зміщується в бік утворення дигідроксиацетону. Подальше збільшення кількості карбонату калію (до 0.1 мас. %) призводить до зменшення селективності за етиллактатом від 61 до 49 %.

В роботах [9, 18] проводили допування $Sn-\beta$ цеоліту іонами молібдену та цинку, таким чином збільшуючи кількість L- та осно́вних центрів, які сприяють проходженню ретро-альдольної реакції та пригнічують дегідратацію фруктози. Як видно з таблиці 1, зразки 10SnO₂-5ZnO/Al₂O₃ $10SnO_2$ -5MoO₃/Al₂O₃ є амфотерними, та тобто на поверхні є як слабкі кислі центри (H_{0max} =+3.3) так і слабкі основні центри (Н_{-тах} =+7.2). В результаті конверсії фруктози на цих каталізаторах, вихід етиллактату до 56 % зріс лише на 10SnO₂-5ZnO/Al₂O₃; при значно зменшується кількість цьому побічного 5-ГМФ на обох зразках (табл. 2).

Слід відмітити, що в експериментах ми використовували досить концентрований 13 % розчин фруктози, тоді як зазвичай використовують слабко концентровані 1–3 % розчини фруктози та масове відношення фруктоза/каталізатор ≥ 2 [6–9, 18]. На рис. 1 наведено значення виходу етиллактату при різній кількості $20SnO_2/Al_2O_3$ каталізатора в реакційній суміші. Видно (рис. 1), що при відношенні фруктоза/каталізатор = 2 спостерігається 45 % вихід етиллактату, і він значно не підвищується при збільшенні кількості каталізатора.

Аналіз одержаних результатів свідчить, що реакцію альдольної деконденсації фруктози, як першу стадію утворення етиллактату, каталізують кислотні ^{IV}Sn⁴⁺ *L*-центри за можливою схемою 1.

Координація атома кисню карбонільної групи фруктози по координаційноненасиченому ^{IV}Sn⁴⁺ іону обумовлює утворення позитивного заряду на C2 атомі фруктози, що сприяє поверненню електронної пари і протона від карбонільної компоненти (гліцераль) до метиленової компоненти (дигідроксиацетон) [16]. Також, кислотні IV Sn⁴⁺ *L*-центри ініціюють ізомеризацію геміацеталю піровиноградного альдегіду до етиллактату за можливою схемою 2.

Рис. 1. Вихід етиллактату при різній кількості 20SnO₂/Al₂O₃ каталізатора (160 °C, 1.5 г фруктози, 10 г 98 % етанолу)

Схема. 1. Перетворення фруктози на кислотних $^{IV}Sn^{4+}$ *L*-центрах

Схема 2. Перегрупування геміацеталю піровиноградного альдегіду до етиллактату на ^{IV}Sn⁴⁺ *L*-центрах

Координація карбонільного атома кисню по ^{IV}Sn⁴⁺ іону призводить до утворення позитивного заряду на атомі вуглецю, що

сприяє послідовному перенесенню гідридіона і протона від ацетальної групи.

ВИСНОВКИ

Показана	можливість	одержання
етиллактату з	високим 50	% виходом з
концентрованих	(13 %) розчи	нів фруктози у
98 % етанолі н	a $20SnO_2/Al_2$	О ₃ та 10SnO ₂ -
5ZnO/Al ₂ O ₃ кат	алізаторах пр	и 160 °С, що

може становити практичний інтерес. Кислотні L-центри ^{IV}Sn⁴⁺ каталізатора забезпечують C3-C4 деконденсацію фруктози з подальшим утворенням метилгліоксалю, який в присутності етанолу перетворюється в етиллактат.

Конверсия D-фруктозы в этиллактат на SnO2-содержащих катализаторах

С.В. Прудиус, Н.М. Вислогузова, В.В. Брей

Институт сорбции и проблем эндоэкологии Национальной академии наук Украины ул. Генерала Наумова, 13, Киев, 03164, Украина, brei@ukr.net

Исследование направлено на поиск эффективных катализаторов получения этиллактата из фруктозы как возобновляемого сырья. Методом просачивания разных носителей синтезирована серия SnO_2 -содержащих катализаторов для трансформации 13 % раствора фруктозы в 98 % этаноле при 160 °C в течение 3 ч в стационарных условиях с применением автоклавов (60 об/мин). Продукты реакции анализировали с помощью метода ¹³С ЯМР спектроскопии. Приведены текстурные характеристики, сила и концентрация кислотных и осно́вных центров синтезированных смешанных оксидов. Все образцы характеризуются развитой поверхностью – 90–380 м²/г, достаточно большим объемом пор – 0.5–0.95 см³/г и широким распределением пор по диаметру – 10–20 нм. Показано, что на кислотных SnO_2 и SnO_2/SiO_2 оксидах происходит дегидратация фруктозы до 5-гидроксиметилфурфурола, левулиновой и муравьиной кислот и их эфиров. Осно́вный SnO_2/MgO - ZrO_2 смешанный оксид способствует конверсии фруктозы в сторону образования 1-гидрокси-2-бутанона, гидроксиацетона, этилпропионата и этилформиата. Образцы SnO_2/ZrO_2 -TiO₂ катализируют дегидратацию фруктозы, в результате которой с 77–90 % селективностью образуется 5-гидроксиметилфурфурол.

Нанесение SnO_2 на Al_2O_3 приводит к значительному повышению выхода целевого продукта – этиллактата. Так, $20SnO_2/Al_2O_3$ катализатор обеспечивает 97 % конверсию фруктозы с 49 % выходом этиллактата. Найдено, что допирование SnO_2/Al_2O_3 ионами цинка приводит к образованию на поверхности смешанного оксида слабых осно́вных центров с $H_{0max} = +7.2$. При этом на катализаторе $10SnO_2-5ZnO/Al_2O_3$ повышается селективность образования этиллактата до 56 % при 100 % конверсии фруктозы. Обсуждается схема преобразования фруктозы в этиллактат на кислотных $^{IV}Sn^{4+}$ L-центрах. Полученные результаты показывают, что реакцию альдольной деконденсации фруктозы, как первую стадию образования этиллактата, катализируют кислотные $^{IV}Sn^{4+}$ L-центры. Также эти центры инициируют изомеризацию полуацеталя пировиноградного альдегида в этиллактат.

Ключевые слова: фруктоза, этиллактат, конверсия, SnO₂-содержащие катализаторы

Conversion of *D*-fructose into ethyl lactate over SnO₂-containing catalysts

S.V. Prudius, N.M. Vyslogusova, V.V. Brei

Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine 13 General Naumov Str., Kyiv, 03164, Ukraine, brei@ukr.net

The study is directed to the search of effective catalysts for ethyl lactate obtaining from fructose as renewable raw material. A series of SnO₂-containing oxides for transformation of 13 % fructose solution in 98 % ethanol was prepared by impregnation of different carriers. The reaction was carried out in autoclaves while rotating at a speed

of 60 rpm for 3 h at 160 °C. The products of fructose conversion were analyzed using ¹³C NMR spectroscopy. The textural characteristics, strength and concentration of acid and base sites of the synthesized mixed oxides are given. All samples are characterized by a developed surface – 90–380 m²/g, a sufficiently large pore volume – 0.5–0.95 cm³/g, and a wide distribution of pores diameter – 10–20 nm. It has been shown that the acidic oxides SnO₂ and SnO₂/SiO₂ dehydrate fructose to 5-hydroxymethylfurfural, levulinic and formic acids and their esters. The basic SnO₂/MgO-ZrO₂ mixed oxide promotes the conversion of fructose towards the formation of 1-hydroxy-2-butanone, hydroxyacetone, ethyl propionate and ethyl formate. SnO₂/ZrO₂-TiO₂ samples catalyze the dehydration of fructose to 5-hydroxymethyl furfural with 77-90 % selectivity. The addition of SnO₂ to Al₂O₃ leads to a significant increase in the yield of the target product - ethyl lactate. Thus, the 20SnO₂/Al₂O₃ catalyst provides 97 % fructose conversion with a 49 % yield of ethyl lactate. It has been found that the addition of zinc ions to SnO₂/Al₂O₃ leads to the formation on the surface of a mixed oxide of a weak basic sites with H_{0max} =+7.2. Thus on 10SnO₂-5ZnO/Al₂O₃ catalyst the selectivity of ethyl lactate formation increases to 56 % at 100 % fructose conversion. The schemes for fructose conversion to ethyl lactate at acid L-centers of Sn⁴⁺ are discussed. The obtained results show that namely acid ^WSn⁴⁺ L-sites catalyze aldol decondensation of fructose as the first stage of the ethyl lactate formation as well as initiate the isomerization of hemiacetal into ethyl lactate.

Keywords: fructose, ethyl lactate, conversion, SnO₂ containing catalysts

ЛІТЕРАТУРА

- U.S. Patent 0041165 A1. Continuous ethyl lactate preparation method / Tretjak S., Burtin E., Teissier R. Опубл. 2006.
- 2. *Pereira C.S.M., Silva V.M.T.M., Rodrigues A.E.* Ethyl lactate as a solvent: Properties, applications and production processes a review // Green Chem. 2011. V. 13, N 10. P. 2658–2671.
- 3. Upare P.P., Hwang Y.K., Chang J.-S., Hwang D.W. Synthesis of lactide from alkyl lactate via a prepolymer route // Ind. Eng. Chem. Res. 2012. V. 51, N 13. P. 4837–4842.
- 4. *Mylin A.M., Levytska S.I., Sharanda M.E., Brei V.V.* Selective conversion of dihydroxyacetone–ethanol mixture into ethyl lactate over amphoteric ZrO₂–TiO₂ catalyst // Catal. Commun. 2014. V. 47. P. 36–39.
- 5. *Милін А.М., Брей В.В.* Селективна конверсія етанолоного розчину гліцерину в етиллактат на CeO₂/Al₂O₃-каталізаторі // Укр. хім. журн. 2016. Т. 82, № 2. С. 79–83.
- 6. *Holm M.S., Saravanamurugan S., Taarning, E.* Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts // Science. 2010. V. 328, N 5978. P. 602–605.
- 7. *Clippel F., Dusselier M., Van Rompaey R. et al.* Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts // J. Am. Chem. Soc. 2012. V. 134, N 24. P. 10089–10101.
- 8. *Tolborg S., Sadaba I., Osmundsen C.M. et al.* Tin-containing silicates: alkali salts improve methyl lactate yield from sugars // Chem. Sus. Chem. 2015. V. 8, N 4. P. 613–617.
- 9. Dong W., Shen Z., Peng B. et al. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-beta lewis acid-base catalyst // Sci. Rep. 2016. V. 6, N 26713. P. 1–8.
- 10. Левицька С.І. Дослідження ізомеризації глюкози у фруктозу на MgO-ZrO₂ каталізаторі в проточному режимі // Катализ и нефтехимия. 2017. № 26. С. 46–52.
- 11. Tanabe K. Solid Acids and Bases: their Catalytic Properties. New-York-London: Acad. Press., 1970.
- 12. *Брей В.В., Прудиус С.В., Ложечник И.И. и др.* Смешанный амфотерный ZrO₂-Al₂O₃ оксид как катализатор превращения 2-метил-3-бутин-2-ола // ТЭХ. 2011. Т. 47, № 3. С. 179–182.
- Shaw P.E., Tatum J.H., Berry R.E. Acid-catalyzed degradation of D-fructose // Carbohydr. Res. 1967. V. 5, N 3. – P. 266–273.
- Shaw P.E., Tatum J.H., Berry R.E. Base-Catalyzed Fructose Degradation and Its Relation to Nonenzymic Browning // J. Agric. Food Chem. – 1968. – V. 16, N 6. – P. 979–982.
- Dusselier M., Sels B.F. Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids // Top. Curr. Chem. – 2014. – V. 353. – P. 85–125.
- 16. Неницеску К.Д. Органическая химия Т. 2. Москва: Изд. иностр. лит., 1963.
- 17. Вейганд-Хильгетаг. Методы эксперимента в органической химии. Москва: Химия, 1968.
- Orazov M., Davis M.E. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures // PNAS. – 2015. – V. 112, N 38. – P. 11777–11782.

REFERENCES

- 1. Patent US 0041165 A1. Tretjak S., Burtin E., Teissier R. Continuous ethyl lactate preparation method. 2006.
- 2. Pereira C.S.M., Silva V.M.T.M., Rodrigues A.E. Ethyl lactate as a solvent: Properties, applications and production processes a review. *Green Chem.* 2011. **13**(10): 2658.
- 3. Upare P.P., Hwang Y.K., Chang J.-S., Hwang D.W. Synthesis of lactide from alkyl lactate via a prepolymer route. *Ind. Eng. Chem. Res.* 2012. **51**(13): 4837.
- 4. Mylin A.M., Levytska S.I., Sharanda M.E., Brei V.V. Selective conversion of dihydroxyacetone–ethanol mixture into ethyl lactate over amphoteric ZrO₂–TiO₂ catalyst. *Catal. Commun.* 2014. **47**: 36.
- 5. Mylin A.M., Brei V.V. Selective conversion of ethanol solution of glycerol to ethyl lactate on CeO₂/Al₂O₃ catalyst. *Ukr. Chem. J.* 2016. **82**(2): 79. [in Ukrainian].
- 6. Holm M.S., Saravanamurugan S., Taarning, E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. *Science*. 2010. **328**(5978): 602.
- Clippel F., Dusselier M., Van Rompaey R., Vanelderen P., Dijkmans J., Makshina E., Giebeler L., Oswald S., Baron G.V., M. Denayer J.F., Pescarmona P.P., Jacobs P.A., Sels B.F. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J. Am. Chem. Soc. 2012. 134(24): 10089.
- 8. Tolborg S., Sadaba I., Osmundsen C.M., Fristrup P., Holm M.S., Taarning, E. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars. *Chem. Sus. Chem.* 2015. **8**(4): 613.
- Dong W., Shen Z., Peng B., Gu M., Zhou X., Xiang B., Zhang Y. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-beta lewis acid-base catalyst. *Sci. Rep.* 2016. 6(26713): 1.
- 10. Levytska S.I. Investigation of glucose isomerization into fructose on MgO-ZrO₂ catalyst in flow mode. *Kataliz i neftekhimiya*. 2017. **26**: 46. [in Ukrainian].
- 11. Tanabe K. Solid Acids and Bases: their Catalytic Properties. (New-York-London: Acad. Press., 1970).
- 12. Brei V.V., Prudius S.V., Lozhechnik I.I., Oranskaya E.I., Shistka D.V. Mixed amphoteric oxide ZrO₂-Al₂O₃ as catalyst for the conversion of 2-methyl-3-butyn-2-ol. *Theor. Exp. Chem.* 2011. **47**(3): 188.
- 13. Shaw P.E., Tatum J.H., Berry R.E. Acid-catalyzed degradation of D-fructose. Carbohydr. Res. 1967. 5(3): 266.
- 14. Shaw P.E., Tatum J.H., Berry R.E. Base-catalyzed fructose degradation and its relation to nonenzymic browning. J. Agric. Food Chem. 1968. 16(6): 979.
- 15. Dusselier M., Sels B.F. Selective catalysis for cellulose conversion to lactic acid and other α -hydroxy acids. *Top. Curr. Chem.* 2014. **353**: 85.
- 16. Nenitescu C.D. Organic Chemistry vol. II. (Moscow: Inostr. Lit., 1963). [in Russian].
- 17. Weygand-Hilgetag. Methods of Experiment in Organic Chemistry. (Moscow: Khimiya, 1968). [in Russian].
- 18. Orazov M., Davis M.E. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures. *PNAS*. 2015. **112**(38): 11777.

Надійшла 04.10.2018, прийнята 18.02.2019