УДК 539: 536.6: 535.33:537.226

ФАЗОВІ ПЕРЕТВОРЕННЯ В ДЕЯКИХ АЛІФАТИЧНИХ МОЛЕКУЛЯРНИХ КРИСТАЛАХ В УМОВАХ ОБМЕЖЕНОГО ПРОСТОРУ

М.М. Лазаренко^{1*}, О.М. Алекссев¹, С.О. Алекссев¹, Ю.Є. Грабовський¹, М.В. Лазаренко²

¹ Київський національний університет імені Тараса Шевченка вул. Володимирська 62а, Київ 01033, Україна ² Національний університет харчових технологій вул. Володимирська 68, Київ 01033, Україна

Фазові перетворення у наноструктурованих 1-октадецені та 10-ундеценовій кислоті досліджено за допомогою теплофізичних методів, ІЧ-спектроскопії та рентгеноструктурного аналізу. Показано, що 1-октадецен як в поруватій матриці кремнію, так і в об`ємі кристалізу-ється з орторомбічною підкоміркою, а ундеценова кислота в поруватій матриці кремнію і в об`ємі кристалізується з різними підкомірками, хоча великий період кристала залишається незмінним. В наноструктурованому 1-октадецені в околі -60°С, а в наноструктурованій ундеценовій кислоті в околі -95°С відбувається перехід від орторомбічної кристалічної до орторомбічної ротаційно-кристалічної фази в граничному шарі. Температура плавлення в умовах обмеженого простору знижується для обох сполук ($\Delta T=11$ °С та $\Delta T=19$ °С відповідно).

ВСТУП

З розвитком різноманітних напрямків в нанотехнології значно зріс інтерес до фізичних досліджень наноструктурованих матеріалів: малих частинок та нанопорошків, тонких плівок, нанокомпозитів [1]. Зокрема, велику увагу приділяють дослідженням властивостей речовин, що введені в пористі матриці з розміром пор від одиниць до сотень нанометрів. Було показано [2–7], що умови обмеженого простору можуть приводити до формування в порах кристалічних модифікацій, що відрізняються від об'ємних, помітно впливати на атомну та молекулярну рухливість у рідинах, зсувати температури фазових переходів, а в деяких випадках змінювати їхній характер.

Одним з прикладів є вплив обмеженого простору на процеси плавлення та кристалізації, які активно вивчалися у зв`язку з практичною важливістю цих фазових переходів в нанопорах. В таких дослідженнях використовувались різноманітні експериментальні методи, серед яких значне місце посідає метод дифракції рентгенівського випромінювання [8, 9]. Були виявлені загальні закономірності впливу обмеженого простору на плавлення та кристалізацію в порах.

До загальних рис наноструктурованих речовин належить перш за все зсув температур плавлення в порівнянні з об'ємними речовинами, величина і знак якого залежать від розміру частинок в порах і співвідношення коефіцієнтів поверхневого натягу для рідкої та твердої фаз і матриці [1]. Крім того, спостерігалося значне розмиття областей плавлення та кристалізації. Специфічні особливості плавлення та кристалізації в умовах обмеженого простору пов'язані зі змочуванням стінок пор матеріалами в порах, механічними напруженнями, що виникають в зразку при фазових переходах, утворенням декількох структурних модифікацій при кристалізації в порах, можливістю появи рідкого шару на поверхні твердої фази тощо [2, 3, 8, 10]. Вплив перерахованих вище факторів досліджено далеко не повністю, і інтерпретація експериментальних даних носить дискусійний та суперечливий характер.

До того ж більшість досліджень в даній області проводяться з низькомолекулярними або атомарними речовинами [1, 3–6, 10]. Високомолекулярні речовини в даному напрямку досліджені мало. Метою роботи було вивчення впливу обмеженого простору нанопор кремнієвої матриці на фазові перетворення в

^{*} контактний автор maxs@univ.kiev.ua

1-октадецені (СН₃(СН₂)₁₅СН=СН₂) та ундеценовій кислоті (CH₂=CH(CH₂)₈COOH) на основі уявлень про них в об'ємній фазі. 1-октадецен належить до класу α-олефінів, у яких на одному кінці є метильна група (-CH₃), а на іншо-MV вінільна $(-CH=CH_2).$ Молекула 1-октадецену має 18 атомів вуглецю, при охолодженні речовина утворює кристали з випрямлених молекулярних ланцюгів, осі яких перпендикулярні до міжкристалічної площини [11]. Ундеценова кислота відноситься до аліфатичних сполук, у яких на одному кінці є вінільна група (-CH=CH₂), а на іншому – кислотна (-СООН). Молекула ундеценової кислоти має 11 атомів вуглецю; речовина утворює кристали з випрямлених молекулярних ланцюгів, осі яких нахилені до міжкристалічної плошини.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА

Вихідні матеріали та приготування зразків. Як порувату матрицю було використано пористий кремній (ПК). Зразки ПК у вигляді "вільних шарів" завтовшки приблизно 50 та 300 мкм одержували шляхом електрохімічного травлення пластин монокристалічного кремнію типу р⁺⁺ (Ω =0,001 Ом·см, кристалографічна орієнтація (100)) у розчині HF(48%): EtOH (1:1 за об'ємом) [12]. Одержані зразки ПК мають поруватість 55% за об'ємом та пори циліндричної форми діаметром 20 нм, що розміщені у зразку рівномірно й аперіодично.

Для заповнення пор ПК 1-октадеценом та/або ундеценовою кислотою зразки ПК занурювали у відповідні рідини, вакуумували протягом 10 хвилин, після чого механічно видаляли надлишок рідини з поверхні зразків.

Рентгеноструктурний аналіз. Дослідження проводились на рентгенівському дифрактометрі ДРОН-3М з трубкою БСВ-28 (λ = 1,79021 A).

Було одержано залежності інтенсивності дифрагованого випромінювання для 1-октадецену та наноструктурованого 1-октадецену, а також ундеценової кислоти та наноструктурованої ундеценової кислоти від кута дифракції $I(2\theta)$ в інтервалі кутів $[2 \div 35]^{\circ}$ (рис. 1, 2) з кроком зміни кута 0,1° при температурі -130°С, що значно нижче температур фазових переходів в досліджуваних зразках.

Рис. 1. Залежність інтенсивності дифрагованого випромінювання для 1-октадецену (*a*) та наноструктурованого 1-октадецену (*б*) від кута дифракції І (2*θ*)

На рентгенівській дифрактограмі об'ємного 1-октадецену (рис. 1) спостерігаються декілька максимумів різних порядків, що відповідають періоду 25 Å, а також два максимуми з періодами 4,1 та 3,6 Å. Положення цих максимумів повністю збігаються з максимумами інтенсивності дифрагованого випромінювання для наноструктурованого 1-октадецену. Це свідчить про те, що кристалічна структура 1-октадецену в нанопорах кремнію не змінилася.

Рис. 2. Залежність інтенсивності дифрагованого випромінювання для ундеценової кислоти (*a*) та наноструктурованої ундеценової кислоти(*б*) від кута дифракції Ι (2θ)

На рентгенівській дифрактограмі ундеценової кислоти та наноструктурованої ундеценової кислоти (рис. 2) спостерігається максимум, що відповідає 25,6 Å. Великий період в ундеценовій кислоті та наноструктурованій ундеценовій кислоті співпадає. Піки при кутах, більших за 20°, для цих зразків відрізняються. Тому відрізняються і кристалічні підкомірки ундеценової кислоти та наноструктурованої ундеценової кислоти. *Калориметрія.* Для дослідження фазових перетворень ми використали динамічний калориметр, що реєструє зміну теплового потоку, який потрапляє в зразок під час нагрівання [13].

Одержано температурні залежності питомої теплоємності $C_p(T)$ для 1-октадецену та наноструктурованого 1-октадецену від температури в інтервалі температур (-155÷80)°С (рис. 3) при швидкості нагріву 2°С/хв.

Рис. 3. Температурні залежності питомої теплоємності C_p(T) об`ємного (*a*) та наноструктурованого (*б*) 1-октадецену (T_{bm} – початок плавлення)

На залежності питомої теплоємності Ср(Т) об'ємного 1-октадецену (рис. 3) спостерігаються два максимуми при $T_{\lambda 1} = -48^{\circ}C$, T₁=-11°C та подвійний максимум при T_{p1}=18°C та T_{m1}=21°C, відповідно. Два піки $(T_1 \text{ та } T_m)$ спостерігались раніше в роботі [14] для α-олефінів з кількістю атомів вуглецю (n) від 10 до 22. Величина температурного інтервалу між цими піками для α-олефінів з вуглецевим ланцюгом n < 12 складає ΔT_{1-m1} < 10°C, а при $n > 12 \Delta T_{1-m1} > 22^{\circ}C$. На думку авторів, це пояснюється тим, що речовини, починаючи з n > 12, кристалізуються в стані орієнтаційного безладу, причому для n = 16 спостерігається також безлад в розташуванні кінцевих груп. Інтервал температур ΔT_{1-m1} автори пов'язують з існуванням полікристалів α-олефінів в гексагональному стані. Але в роботі [11] для 1-ейкозену показано існування в інтервалі ΔT_{1-m1} двох фаз Or_{rot.1} та Hr_{rot.2}, де T_{p1} є температура переходу між фазами. Наявність першого піку $T_{\lambda 1}$ не була підтверджена, тому що дослідження проводились до T>-10°C. В роботі [15] було виявлено існування більш низькотемпературного піку T_{λ} для n = 16 (1 - C_{16}). Иого назвали піком λ -типу, але природа цього піку не була з'ясована. Автори роботи [16] пояснюють його природу тим, що при температурі $T_{\lambda 1} = -48^{\circ}$ С, внаслідок збільшення міжшарового простору, у кінцевої вінільної групи з'являється можливість переорієнтації.

На залежності питомої теплоємності $C_p(T)$ наноструктурованого 1-октадецену (рис. 3) з'явився новий максимум з початком $T_{rot.G} = -60^{\circ}$ С, а максимуми, що характерні для об'ємного 1-октадецену, змістилися: $T_2 = -6^{\circ}$ С, $T_{p2} = 3^{\circ}$ С, $T_{m2} = 10^{\circ}$ С.

Було одержано залежності питомої теплоємності ундеценової кислоти та наноструктурованої ундеценової кислоти від температури $C_p(T)$ в інтервалі температур (-50÷50)°C (рис. 4.) при швидкості нагрівання 2°C/хв.

Для ундеценової кислоти на залежності $C_p(T)$ спостерігається стрибок теплоємності в інтервалі [-20÷-12]°С та виявлено два максимуми при T = 25°С та T_{m1} =30°С, відповідно.

Для наноструктурованої ундеценової кислоти на залежності $C_p(T)$ спостерігається стрибок теплоємності в інтервалі $[-20 \div -12]^{\circ}$ С та виявлено максимум $T_{m2} = 11^{\circ}$ С.

ІЧ-спектроскопія. За допомогою ІЧ Фур'є спектрометра Nicolet-Nexus було одержано ІЧ-спектри пропускання для 1-октадецену та наноструктурованого 1-октадецену в інтервалі $[-120 \div 50]^{\circ}$ С з кроком $\Delta T = 5^{\circ}$ С та для ундеценової кислоти та наноструктурованої ундеценової кислоти в інтервалі $[-80 \div 50]^{\circ}$ С з кроком $\Delta T = 5^{\circ}$ С.

Структурно-чутливою в IU-спектрах подібних зразків є смуга, пов'язана з маятниковими коливаннями CH₂ груп в аліфатичному ланцюзі в околі v = 720 см⁻¹. При температурах, нижчих температур фазового переходу, спостерігається давидівське розщеплення $\Delta v_{1,2}(T)$ цієї смуги (рис. 5). Це притаманне лише орторомбічній підкомірці кристала [17].

Рис. 5. Залежність поглинання в ІЧ-спектрах для 1-октадецену від температури та хвильового числа v в області v = 720 см⁻¹

Температурні залежності величини давидівського розщеплення $\Delta v_{1,2}(T)$ 1-октадецену та наноструктурованого 1-октадецену представлено на рис. 6 та рис. 7.

Рис. 6. Залежність величини давидівського розщеплення $\Delta v_{1,2}(T)$ (*a*) та похідної $d(\Delta v_{1,2}(T))/dT$ (б) від температури для 1-октадецену

Як бачимо з рис. 6, в інтервалі температур -100°C -30°C від до для об'ємного 1-октадецену $\Delta v_{1,2}(T)$ практично не змінюється, а при досягненні початку фазового переходу (T_{Orot.1} = -30°С) величина розщеплення різко зменшується в два етапи від Т_{отот.1} = -30°С до T_{bm} = 0°С та від T_{bm} =0°С до T_2 =18°С. Можна зробити висновок, що при охолодженні до -100°С 1-октадецен кристалізувався з орторомбічною симетрією підкомірки Orcrys. Величина розщеплення $\Delta v_{1,2}$ обернено пропорційна до R³, де R – відстань між осями молекул в орторомбічній підкомірці [17]. З аналізу залежності $\Delta v_{1,2}(T)$ (рис. 6) можна зробити висновок, в околі фазового переходу ЩО

 $(T_{Orot.1} = -30^{\circ}C)$ величина R збільшується в два етапи і стає можливою азимутальна переорієнтація ланцюгових молекул. Це підтверджує існування в твердому стані 1-октадецену орторомбічної ротаційно-кристалічної фази O_{rrot.1}.

Розщеплення зникає при $T_2 = 18^{\circ}C$ (рис. 6). Це свідчить про відсутність азимутальної кореляції між молекулами. На нашу думку, 1-октадецен в інтервалі $[18 \div 21]^{\circ}C$ перебуває в гексагональній ротаційно-кристалічній модифікації Hr_{rot.2}.

Рис. 7. Залежність величини давидівського розщеплення $\Delta v_{1,2}(T)$ (*a*) та похідної $d(\Delta v_{1,2}(T))/dT$ (б) від температури для наноструктурованого 1-октадецену

Для наноструктурованого 1-октадецену поведінка величини давидівського розщеплення $\Delta v_{1,2}(T)$ (рис. 7) від температури має такий же характер, як і в об'ємному 1-октадецені (рис. 6), окрім спадання на 5,6% величини $\Delta v_{1,2}(T)$ в інтервалі $T_{\text{Orot.G}} \div T_{\text{Orot.1}}$. Виходячи з розмірів пори та орторомбічної підкомірки кристалів 1-октодецену [18] та враховуючи, що осі молекул перпендикулярні до площини шарів кінцевих груп [11], можна припустити, що в граничному шарі знаходиться 7,5% від кількості молекул в порі (рис. 8). Кожна молекула 1-октадецену в граничному шарі оточена лише з трьох боків подібними молекулами. Тоді внесок в давидівське розщеплення від граничного шару буде складати 34 від 7,5%, а саме 5,6%. Тому можна стверджувати, що спадання величини $\Delta v_{1,2}(T)$ пов'язане з азимутальною переорієнтацією ланцюгових молекули в граничному шарі. Це підтверджує існування в твердому стані наноструктурованого 1-октадецену орторомбічної ротаційнокристалічної фази Ог_{гот.G.} в граничному шарі.

Рис. 8. Можливе розташування молекул 1-октадецену в порі (зріз пори перпендикулярно до її осі)

На рис. 9 представлена залежність поглинання в ІЧ-спектрах для ундеценової кислоти від температури T та хвильового числа v в області v = 720 см⁻¹.

Рис. 9. Залежність поглинання ІЧ-випромінювання для ундеценової кислоти від температури Т та хвильового числа *v* в області *v* = 720 см⁻¹

Як бачимо, при підвищенні температури спостерігається зближення двох піків, а в околі температури фазового переходу – їхнє злиття в один. Розділення двох максимумів і визначення величини $\Delta v_{1,2}$ в області v = 720 см⁻¹ ми проводили шляхом апроксимації профілів піків розподілом Фойгта.

Температурні залежності величини давидівського розщеплення $\Delta v_{1,2}(T)$ для ундеценової кислоти представлено на рис. 10. З нього видно, що в інтервалі температур від -80°С до -30°С $\Delta v_{1,2}(T)$ монотонно спадає, а при досягненні температури початку фазового переходу ($T_{rot.1} = -30$ °С) величина розщеплення різко зменшується в два етапи від $T_{rot.1} = -30$ °С до $T_1 = -10$ °С та від $T_{bm} = 15$ °С до $T_m = 30$ °С.

Рис. 10. Залежність величини давидівського розщеплення $\Delta v_{1,2}(T)$ (*a*) та похідної $d(\Delta v_{1,2})/dT$ (б) від температури для ундеценової кислоти

Можна зробити висновок, що при охолодженні до -80°С ундеценова кислота кристалізується з орторомбічною симетрією підкомірки Or_{crys}. Аналіз залежності $\Delta v_{1,2}$ (Т) (рис. 10) дозволяє зробити висновок, що в околі фазового переходу (T_{rot.1} = -30°С) відстань між молекулами збільшується в два етапи і стає можливою азимутальна переорієнтація ланцюгових молекул. Це підтверджує існування в ундеценовій кислоті орторомбічної ротаційнокристалічної фази Or_{rot.1}.

Температурні залежності величини давидівського розщеплення $\Delta v_{1,2}(T)$ для наноструктурованої ундеценової кислоти представлено на рис. 11.

З цього рисунку видно що, в інтервалі температур від -120°С до -95°С $\Delta v_{1,2}(T)$ монотонно спадає, а при досягненні темпера-

тури початку фазового переходу в граничному шарі (T_{rot.G} = -95°С) величина розщеплення різко зменшується. Тобто спадання величини $\Delta v_{1,2}(T)$ пов'язане з азимутальною переорієнтацією ланцюгових молекул в граничному шарі. Це підтверджує існування в твердому стані наноструктурованого 1-октадецену орторомбічної ротаційно-кристалічної фази Or_{rot.G}. в граничному шарі. В інтервалі температур від -80°С до -50°С $\Delta v_{1,2}(T)$ монотонно спадає, а при досягненні температури початку фазового переходу (T_{rot.2} = -50°C) величина розщеплення різко зменшується, причому в два етапи від $T_{rot.1} = -50^{\circ}C$ до $T_1 = -20^{\circ}C$ та від T_{bm2}=-5°С до T_{m2}=11°С. Аналіз залежності $\Delta v_{1,2}(T)$ (рис. 11) дозволяє зробити висновок, що в околі фазового переходу (Trot.2 = -50°C) відстань між осями молекул збільшується в два етапи і стає можливою азимутальна переорієнтація ланцюгових молекул. Це підтверджує існування в наноструктурованій ундеценовій кислоті орторомбічної ротаційнокристалічної фази Or_{rot.1}.

ВИСНОВКИ

Фазові перетворення у наноструктурованих 1-октадецені та 10-ундеценовій кислоті були досліджені за допомогою теплофізичних методів, ІЧ-спектроскопії та рентгеноструктурного аналізу.

Аналізуючи вплив обмеженого простору нанопор кремнієвої матриці на фазові перетворення в 1-октадецені та ундеценовій кислоті (CH₂=CH(CH₂)₈COOH) на основі уявлень про них в об'ємній фазі, можна стверджувати, що 1-октадецен як в поруватій матриці з кремнію, так і в об'ємі кристалізується з орторомбічною підкоміркою, а ундеценова кислота в поруватій матриці з кремнію і в об'ємі кристалізується з різними підкомірками, хоча великий період кристалу залишається незмінним.

В наноструктурованому 1-октадецені в околі -60°С, а в наноструктурованій ундеценовій кислоті в околі -95°С відбувається перехід від орторомбічної кристалічної фази до орторомбічної ротаційної-кристалічної фази в граничному шарі. Як початок плавлення, так і фазові переходи від орторомбічної кристалічної фази до орторомбічної кристалічної фази до орторомбічної ротаційноїкристалічної фази в об'ємних фазах наноструктурованого 1-октадецену та в його полікристалах відбуваються при однакових температурах, а у випадку наноструктурованої ундеценової кислоти ці перетворення відбуваються при різних температурах. Температура плавлення наноструктурованого 1-октадецену та об'ємного 1-октадецену різняться на 11°С, а для наноструктурованої ундеценової кислоти та об'ємної ундеценової кислоти – $\Delta T = 19$ °С.

Відмінність в поведінці наноструктурованих 1-октадецену та ундеценової кислоти пов'язана з наявністю кислотних груп в молекулах ундеценової кислоти, які впливають на структуру кристалів, в яких виникає двошарова молекулярна структура з відмінним від $\pi/2$ кутом нахилу осі с молекул відносно площини утвореної кінцевими групами. Ми вважаємо, що ця особливість може бути причиною відмінності кристалічної структури в об'ємній та наноструктурованій ундеценовій кислоті.

ЛІТЕРАТУРА

- Alba-Simionesco C., Coasne B., Dosseh G. et al. Effects of Confinement on Freezing and Melting // J. Phys. Condens. Matter. – 2006.– V. 18, N 6. – P. 15–68.
- 2. Борисов Б.Ф., Гартвик А.В., Горчаков А.Г. и др. Акустические исследования плавления и кристаллизации наноструктурированого декана // Физика твердого тела. – 2009. – Т. 51, № 4. – С. 777–782.
- Wallacher D., Huber P., Knorr K. Solid Ar, N₂, CO and O₂ in nanopores // J. Low Temp. Phys. – 2001. – V. 122, N 3–4. – P. 313–322.
- Jähnert S., Vaca Chávez F., Schaumann G.E. et al. Melting and freezing of water in cylindrical silica nanopores // Phys. Chem. Chem. Phys. – 2008. – V. 10. – P. 6039–6051.
- Hoyt J.J. Effect of stress on melting and freezing in nanopores // Phys. Rev. Lett. – 2006. – V. 96, N 4.–P. 045702 (1–4).
- Findenegg G.H., Jähnert S., Akcakayiran D., Schreiber A. Freezing and melting of water cofind in silica nanopores // ChemPhysChem. – 2008. – V. 9, N 18. – P. 2651–2659.
- Valiullin R., Khokhlov A. Orientation ordering of linear n-alkanes in silicon nanotubes // Phys. Rev. E. – 2006. – V. 73.– P. 051605 (1–4).
- Huber P., Wallacher D., Albers J., Knorr K. Quenching of lamellar ordering in an *n*-alkane embedded in nanopores // Europhys. Lett. – 2004. – V. 65, N 3. – P. 351–357.
- 9. *Henschel A., Huber P., Knorr K.* Crystallization of medium-length 1-alcohols in

mesoporous silicon: an X-ray diffraction study // Phys. Rev. E. -2008. - V. 77, N 4. - P. 042602 (1–4).

- Noh K.W., Woo E., Shin K. Alteration of crystal structure of bismuth confined in cylindrical nanopores // Chem. Phys. Lett. 2007.– V. 444, N 1–3.– P. 130–134.
- Gang H., Gang O., Shao H.H. et al. Rotator phases and surface crystallization in αeicosene // J. Phys. Chem. B. – 1998. – V. 102, N 15. – P. 2754–2758.
- Manilov A.I., Alekseev S.A., Skryshevsky V.A. et al. Influence of palladium particles impregnation on hydrogen behaviour in mesoporous silicon // J. Alloys Compd. – 2010. – V. 492, N 1–2. – P. 466–472.
- Годовский Ю.К. Теплофизические методы исследования полимеров. – Москва: Химия, 1976. – 216 с.

- McCullough J.P., Finke H.L., Gross M.E., Messerly J.F. Low temperature calorimetric studies of seven 1-olefins: effect of orientational disorder in the solid state // J. Chem. Phys. – 1957. – V. 61, N 3. – P. 289–301.
- Messerly J.F., Todd S.S., Finke H.L. et al. Heat capacities of pent-1-ene (10 K to 320 K), *cis*-hex-2-ene (10 K to 330 K), non-1-ene (10 K to 400 K) and hexadec-1-ene (10 K to 400 K) // J. Chem. Thermodyn. – 1990. – V. 22, N 11. – P. 1107–1128.
- Алексеев О.М., Алексеев С.О., Булавін Л.А. та ін. Фазові перетворення в ланцюгових молекулярних полікристалах 1-октадецену // Укр. фіз. журн. – 2008. – Т. 53, № 9. – С. 882–887.
- Бабков Л.М., Пучковская Г.А., Макаренко С.П., Гаврилко Т.А. ИК-спектроскопия молекулярных кристаллов с водородными связями. – Киев: Наукова думка, 1989. – 160 с.

Надійшла 14.01.2011, прийнята 19.02.2011

Фазовые переходы в некоторых алифатических молекулярных кристаллах в условиях ограниченного пространства

М.М. Лазаренко, А.Н. Алексеев, С.А. Алексеев, Ю.Е. Грабовский, М.В. Лазаренко

Киевский национальный университет имени Тараса Шевченко ул. Владимирская 62а, Киев 01033, Украина, maxs@univ.kiev.ua Национальный университет пищевых технологий ул. Владимирская 68, Киев 01033, Украина

Фазовые превращения в наноструктурированном 1-октадецене и 10-ундеценовой кислоте были исследованы с помощью теплофизических методов, ИК-спектроскопии и рентгеноструктурного анализа. Показано, что 1-октадецен как в пористой матрице кремния, так и в объеме кристаллизуется с орторомбической подъячейкой, а ундеценовая кислота – с разными подъячейками, хотя большой период кристалла остается неизменным. В наноструктурированном 1-октадецене в окрестности -60°С, а в наноструктурированной ундеценовой кислоте в окрестности -95°С происходит переход от орторомбической кристаллической фазы к орторомбической ротационно-кристаллической фазе в граничном слое. Температура плавления в условиях ограниченного пространства понижается для обоих веществ ($\Delta T=11$ °С и $\Delta T=19$ °С соответственно).

Phase Transitions of Some Alyphatic Molecular Crystals in Confined Space

M.M. Lazarenko, A.N. Alekseev, S.A. Alekseev, Yu.E. Grabovsky, M.V. Lazarenko

Taras Shevchenko National University of Kyiv 62a Volodymyrs'ka Street, Kyiv 01033, Ukraine, maxs@univ.kiev.ua National University of Food Technology 68 Volodymyrs'ka Street, Kyiv 01033, Ukraine

Phase transformations of nanostructured 1-octadecene and 10-undecylenic acid were studied by thermophysical methods, FTIR spectroscopy and X-ray diffraction. It was shown that bulk as well as nanostructured 1-octadecene crystallizes in orthorhombic unit cell. However, the unit cells of 10-undecylenic acid in bulk and inside the porous silicon are differen, but with the same large period of the pattern. The transition between orthorhombic crystalline and orthorhombic rotation-crystalline phases in boundary layer takes place at -60°C for nanostructured 1-octadecene and at -95°C for nanostructured 10-undecylenic acid. At the same time, the melting temperatures decrease in the confined media comparing to bulk for both substances ($\Delta T = 11^{\circ}C$ and $\Delta T = 19^{\circ}C$, respectively).