Хімія, фізика та технологія поверхні, 2016, 7 (4), 444-452.

Молекулярний ротор як високотемпературний броунівський мотор



DOI: https://doi.org/10.15407/hftp07.04.444

O. Ye. Tsomyk, T. Ye. Korochkova, V. M. Rozenbaum

Анотація


Розраховано швидкість обертання полярних молекулярних роторів з використанням теорії високотемпературних броунівських моторів. Досліджено аналітичні залежності швидкості обертання від параметрів моделі для двох випадків залежності прикладеного змінного електричного поля від часу: гармонійної та ступінчастої. Середня швидкість обертання ротора в першому випадку пропорційна квадрату частоти модуляції поля, а в другому – лінійно залежить від частоти. Показано, що оптимальним режимом роботи ротора є дихотомний режим зміни електричного поля.

Ключові слова


молекулярний ротор; броунівський мотор; ретчет; дифузійна динаміка; флуктуації потенціалу

Повний текст:

PDF (English)

Посилання


1. Rozenbaum V.M., Ogenko V.M., Chuiko A.A. Vibrational and orientational states of surface atomic groups. Sov. Phys. Usp. 1991. 34(10): 883. https://doi.org/10.1070/PU1991v034n10ABEH002525 

2. Rozenbaum V.M., Lin S.H. Spectroscopy and Dynamics of Orientationally Structured Adsorbates. (Singapure: World Scientific, 2002).

3. Kottas G.S., Clarke L. I., Horinek D., Michl J. Artificial molecular rotors. Chem. Rev. 2005. 105(4): 1281. https://doi.org/10.1021/cr0300993 

4. Vacek J., Michl J. Artificial surface-mounted molecular rotors: molecular dynamics simulations. Adv. Funct. Mater. 2007. 17(5): 730. https://doi.org/10.1002/adfm.200601225 

5. Rozenbaum V.M., Vovchenko O.Ye., Korochkova T.Ye. Brownian dipole rotator in alternating electric field. Phys. Rev. E. 2008. 77(6): 061111. https://doi.org/10.1103/PhysRevE.77.061111 

6. Rozenbaum V.M., Tsemik O.E. Analytical description of thermally stimulated polarization and depolarization currents. Phys. Solid State. 2010. 52(10): 2192. https://doi.org/10.1134/S106378341010029X 

7. Lemouchi C., Iliopoulos K., Zorina L., Simonov S., Wzietek P., Cauchy Th., Rodríguez-Fortea A., Canadell E., Kaleta J., Michl J., Gindre D., Chrysos M., Batail P. Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J. Am. Chem. Soc. 2013. 135(25): 9366. https://doi.org/10.1021/ja4044517 

8. Comotti A., Bracco S., Ben T., Qiu Sh., Sozzani P. Molecular rotors in porous organic frameworks. Angew. Chem. Int. Ed. 2014. 53: 1043. https://doi.org/10.1002/anie.201309362 

9. Lien Ch., Seck Ch. M., Lin Y.-W., Nguyen J. H.V., Tabor D.A., Odom B. C. Broadband optical cooling of molecular rotors from room temperature to the ground state. Nature Commun. 2014. 5: 4783. https://doi.org/10.1038/ncomms5783 

10. Raeburn J., Chen L., Awhida S., Deller R.C., Vatish M., Gibson M.I., Adams D.J. Using molecular rotors to probe gelation. Soft Matter. 2015. 11: 3706. https://doi.org/10.1039/C5SM00456J 

11. Jiang X., O'Brien Z.J., Yang S., Lai L.H., Buenaflor J., Tan C., Khan S., Houk K.N., Garcia-Garibay M.A. Crystal fluidity reflected by fast rotational motion at the core, branches, and peripheral aromatic groups of a dendrimeric molecular rotor. J. Am. Chem. Soc. 2016. 138(13): 4650. https://doi.org/10.1021/jacs.6b01398 

12. Khodorkovsky Y., Steinitz U., Hartmann J.-M., Averbukh I.Sh. Collisional dynamics in a gas of molecular super-rotors. Nature Commun. 2015. 6: 7791. https://doi.org/10.1038/ncomms8791 

13. Kaleta J., Michl J., Mézière C., Simonov S., Zorina L., Wzietek P., Rodríguez-Fortea A., Canadell E., Batail P. Gearing motion in cogwheel pairs of molecular rotors: weak-coupling limit. Cryst. Eng. Comm. 2015. 17:7829. https://doi.org/10.1039/C5CE01372K 

14. Puigmartí-Luis J., Saletra W.J., González A., Pérez-García L., Amabilino D.B. Assembling Supramolecular Rotors on Surfaces under Ambient Conditions. Advances in Atom and Single Molecule Machines. (Berlin: Springer Int. Pub, 2015).

15. Cherioux F., Galangau O., Palmino F., Repenne G. Controlled directional motions of molecular vehicles, rotors, and motors: from metallic to silicon surfaces, a strategy to operate at higher temperatures. Chen. Phys.Chem. Minirewievs. 2016. 17: 1742. https://doi.org/10.1002/cphc.201500904 

16. Tsomik O.Ye., Chernova A.A., Rozenbaum V.M. Near-surface Brownian motors, controlled by an alternating electric field. Dopov. Nat. akad. nauk Ukr. 2009. 12: 83. [in Russian]

17. Rozenbaum V.M. High-temperature brownian motors: Deterministic and stochastic fluctuations of a periodic potential. JETP Letters. 2008. 88(5): 342. https://doi.org/10.1134/S0021364008170128 

18. Shapochkina I.V., Rozenbaum V.M. High-temperature diffusion transport: transient processes in symmetric dichotomous deterministic fluctuations of the potential energy. Vestnik BGU. 2009. 1(2): 43. [in Russian]

19. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series. (NY: Gordon and Breach Science Publishers, 1992).




DOI: https://doi.org/10.15407/hftp07.04.444

Copyright (©) 2016 O. Ye. Tsomyk, T. Ye. Korochkova, V. M. Rozenbaum

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.