Synthesis and characterization of nitrogen and zirconium ions doped TiO<sub>2</sub> films for photocatalytic application
Abstract
Codoped by nitrogen and zirconium ions titania thin films have been obtained by sol-gel and pulse laser deposition (PLD) methods to investigate the influence of zirconium ions as well as the synthesis procedure on the efficiency of nitrogen incorporation into semiconductive lattice that, in turns, effected on the film activity under ultraviolet and visible light. The composition of the films and the synthesis methods changed the optical properties of the materials as namely almost no effect of both doping agents on the band gap energy value was noted for the films obtained by pulse laser deposition technique, while its sharp narrowing was observed for nitrogen doped titania sol-gel sample. Additionally, the high absorption in the visible part of the spectra with the different maxima were registered for sol-gel films. Substitutional and interstitial nitrogen incorporation occurred in the case of sol-gel titania doped by both doping agents and only nitrogen, respectively. However, both types of nitrogen atoms were detected by X-ray photoelectron spectroscopy measurements for the laser deposited films and the relative intensity of its state was dependent whether single or double doping agents was used. Incorporation of each doping agent in titania matrix positively influenced on the photocatalytic activity of the sol-gel films under both ultraviolet and visible light. In the case of pulse laser deposited films, the presence of double doping agent stimulated the activity under UV light and the doping only by nitrogen led to the increase of photoactivity in visible light.References
1. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972. 238: 37. https://doi.org/10.1038/238037a0
2. Czoska A.M., Livraghi S., Chiesa M., Giamello E., Agnoli S., Granozzi G., Finazzi E., Di Valentin C., Pacchioni G. The nature of defects in Fluorine-doped TiO2. J. Phys. Chem. C. 2008. 112(24): 8951. https://doi.org/10.1021/jp8004184
3. Linnik O., Kisch H. On the mechanism of nitrogen fixation at nanostructured iron titanate films. Photochem. Photobiol. Sci. 2006. 5: 938. https://doi.org/10.1039/b608396j
4. Asahi R., Morikawa T., Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium dioxide. Science. 2001. 293(5528): 269. https://doi.org/10.1126/science.1061051
5. IrieH., WatanabeY., HashimotoK. Nitrogen-concentration dependence on photocatalyticactivity of TiO2-xNx powders. J. Phys. Chem. B. 2003. 107(23): 5483. https://doi.org/10.1021/jp030133h
6. Serpone N. Is the band gap of pristine TiO2 narrowed by anion- andcation-doping of titanium dioxide in second-generation photocatalysts. J. Phys. Chem. B. 2006. 110(48): 24287. https://doi.org/10.1021/jp065659r
7. Yin S., Ihara K., Aita Y.M., Sato K.T. Visible-light induced photocatalytic activity of TiO2−xAy (A = N, S) prepared by precipitation route. J. Photochem. Photobiol. A. 2006. 179(1–2): 105. https://doi.org/10.1016/j.jphotochem.2005.08.001
8. Kobayakawa K., Murakami Y., Sato Y. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. J. Photochem. Photobiol. A. 2005. 170(2):177. https://doi.org/10.1016/j.jphotochem.2004.07.010
9. Cong Y., Zhang J., Chen F., Anpo M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C. 2007. 111(19): 6976. https://doi.org/10.1021/jp0685030
10. Huang D., Liao S., Quan S., Liu L., He Z., Wan J., Zhou W. Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process. J. Non-Cryst. Solids. 2008. 354(33): 3965. https://doi.org/10.1016/j.jnoncrysol.2008.05.026
11. Beranek R., Kisch H., Beranek R., Kisch H. Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem. Photobiol. Sci. 2008. 7: 40. https://doi.org/10.1039/B711658F
12. Yuan J., Chen M., Shi J., Shangguan W. Preparation and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int. J. Hydrogen Energy. 2006. 31(10): 1326. https://doi.org/10.1016/j.ijhydene.2005.11.016
13. Bacsa R., Kiwi J., Ohno T., Albers P., Nadtochenko V. Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J. Phys.Chem. B. 2005. 109(12): 5994 – 6003. https://doi.org/10.1021/jp044979c
14. Di V.C., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Paganini M.C., Giamello E. N-doped TiO2: Theory and experiment. Chem. Phys. 2007. 339(1–3): 44.
15. Emeline A.V., Kuznetsov V.N., Rybchuk V.K., Serpone N. Visible-light-active titania photocatalysts: the case of N-doped TiO2 s-properties and some fundamental issues. Int. J. Photoenergy. 2008. 2008: Article ID 258394.
16. Shestopal N., Linnik O., Smirnova N. Influence of metal and non-metal ions doping on the structural and photocatalytic properties of titania films. Him. Fiz. Tehnol. Poverhni. 2015. 6(2): 203. https://doi.org/10.15407/hftp06.02.203
17. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 2000. 1(1): 1. https://doi.org/10.1016/S1389-5567(00)00002-2
18. Ristoscu C., Mihailescu I.N. Biomimetic Coatings by pulsed laser deposition, chapter 7. In: «Laser Technology in Biomimetics». Basics and Applications, Series: Biological and Medical Physics, biomedical Engineering. (Springer-Verlag Heidelberg, New York, Dordrecht, London, 2013). P. 163.
19. Mihailescu I.N., Ristoscu C., Bigi A., Mayer I. Advanced biomimetic implants based on nanostructured coatings synthesized by pulsed laser technologies, Chapter 10. In «Laser-Surface Interactions for New Materials Production Tailoring Structure and Properties». Series: Springer Series in Materials Science. V. 130. 2010. P. 235.
20. Mihailescu I.N., Gyorgy E. Pulsed Laser Deposition: An Overview. In: International Trends in Optics and Photonics. (Heidelberg: Springer, 1999). https://doi.org/10.1007/978-3-540-48886-6_13
21. Linnik O., Shestopal N., Smirnova N., Eremenko A., Korduban O., Kandyba V., Kryshchuk T., Socol G., Stefan N., Popescu-Pelin G., Ristoscu C., Mihailescu I.N. Correlation between electronic structure and photocatalytic properties of non-metal doped TiO2/ZrO2 thin films obtained by pulsed laser deposition method. Vacuum. 2015.114: 166.
22. Gnatuk Yu., Smirnova N., Korduban O., Eremenko A. Effect of zirconium incorporation onthe stabilization of TiO2 mesoporous structure. Surf. Interface Anal. 2010. 42(6–7): 1276. https://doi.org/10.1002/sia.3494
23. Smirnova N., Gnatyuk Yu., Eremenko A., Kolbasov G., Vorobetz V., Kolbasova I., Linyucheva O. Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films. Int. J. Photoenergy. 2006. Article ID 85469: 1.
24. Yang J., Bai H., Jiang Q., Lian J. Visible-light photocatalysis in nitrogen-carbon-doped TiO2 films obtained by heating TiO2 gel-film in an ionized N2 gas. Thin Solid Films. 2008. 516(8): 1736. https://doi.org/10.1016/j.tsf.2007.05.034
25. Kisch H., Sakthivel S., Janczarek M., Mitoraj D. A low-band gap, nitrogen-modified titania visible-light photocatalyst. J. Phys. Chem. C. 2007. 111(30): 11445. https://doi.org/10.1021/jp066457y
26. Wang C.T., Wang, Lin J.C. Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts. Appl. Surf. Sci. 2008. 254(15): 4500. https://doi.org/10.1016/j.apsusc.2008.01.024
27. Alam M.J., Cameron D.C. Preparation and characterisation of TiO2 thin films by sol-gel method. J. Sol-Gel Sci. Technol. 2002. 25(2): 137. https://doi.org/10.1023/A:1019912312654
28. Linnik O., Petrik I., Smirnova N., Kandyba V., Korduban O., Eremenko A., Socol G., Stefan N., Ristoscu C., Mihailescu I.N., Sutan C., Malinovski V., Djokic V., Janakovic D. TiO2/ZrO2 thin films synthesized by PLD in low pressure N-, C- and/or O-containing gases: structural, optical and photocatalytic properties. Digest Journal of Nanomaterials and Biostructures. 2012. 7(3): 1343.
29. Mitoraj D., Kisch H. On the mechanism of urea-induced titania modification. Chemistry. 2010. 16(1): 261. https://doi.org/10.1002/chem.200901646
30. Chen H., Nambu A., Wen W., Graciani J., Zhong Z., Hanson J.C., Fujita E., Rodriguez J.A. Reaction of NH3 with Titania: N-doping of the oxide and TiN formation. J. Phys. Chem. C. 2007. 111(3): 1366. https://doi.org/10.1021/jp066137e
31. Gnatyuk Yu., Smirnova N., Eremenko A., Ilyinl V. Design and photocatalytic activity of mesoporous TiO2/ZrO2 thin films. Adsorp. Sci. Technol. 2005. 23(6): 4978. https://doi.org/10.1260/026361705774859893
32. DiValentin C., Pacchioni G., Livraghi S.A.S., Giamello E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B. 2005. 109(23):11414. https://doi.org/10.1021/jp051756t
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.