Хімія, фізика та технологія поверхні, 2023, 14 (3), 393-406.

Синтез нанопорошків Ni та Cu методом електролізу



DOI: https://doi.org/10.15407/hftp14.03.393

Ol. D. Zolotarenko, E. P. Rudakova, An. D. Zolotarenko, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, V. A. Lavrenko, M. T. Gabdullin, Yu. I. Zhirko, A. D. Zolotarenko, Yu. O. Tarasenko, M. V. Chymbai, O. O. Havryliuk

Анотація


Приготування керамічних композитів на основі нанопорошків металу дозволяють значно змінити теплові характеристики керамічної матриці, що важливо для створення технології теплопровідної кераміки.

В роботі встановлений максимально ефективний спосіб отримання нанопорошку нікелю на потенціостаті «П-5848» електролізом cульфату нікелю (NiSO4) з додаванням борної кислоти (H3BO3), тіосечовини ((NH4)2CS) та хлориду нікелю (II) (NiCl2). Синтез нанопорошку Ni проводився при густині струму від 1.0 до 3.3 А/дм2 та при температурі 45–65 °С, де анодом була обрана платинова (Pt) пластина, а катод був спеціально виготовлений з особливо чистого алюмінію (Al). Результати дослідження показали синтез нанопорошку Ni при розмірі 55 нм у вигляді тонких лусок. В роботі також розглянуті електрохімічні реакції на катоді та на аноді.

Також в роботі проведено декілька вдалих експериментів, що дозволили встановити економічно вигідну технологію синтезу нанопорошку міді методом електролізу при 13.3 ампер-годин струму на 1 дм2 площини аноду та при відносно низькій температурі розчину сульфату міді (CuSO4). Мідний нанопорошок видаляється на дно ванни з аноду при ударному струшуванні. Не менш вдалий був проведений експеримент, де був катод у вигляді декількох мідних пластин на відстані 0.8 см одне від одного з напругою між ними в 0.775 В, та густиною струму 15.3 А/дм2 при температурі 54 °С в електроліті з 45 % H2SO4, 8 % Na2SO4 і 4 % CuSO4.

В роботі наведені таблиці з вихідними та кінцевими даними всіх експериментів з синтезу нанопорошків методом електролізу.


Ключові слова


нанопорошок міді (Cu); електрохімія; мідь дендритної форми; нанопорошок нікелю (Ni); потенціостат; алюмінієвий (Al) катод; платиновий (Pt) анод

Повний текст:

PDF (English)

Посилання


Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security, PartF2. 2008. P. 53.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Yu., Zolotarenko An.D., Shchur D.V., Matysina Z.A., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Comparative Analysis of Products of the Fullerenes' and Carbon-Nanostructures' Synthesis Using the SIGE and FGDG-7 Grades of Graphite. Nanosistemi, nanomateriali, nanotehnologii. 2022. 20(3): 725. https://doi.org/10.15407/nnn.20.03.725

Gun'ko V.M., Turov V.V., Zarko V.I., Prykhod'ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chem. Phys. 2015. 459: 172. https://doi.org/10.1016/j.chemphys.2015.08.016

Nishchenko M.M., Likhtorovich S.P., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4

Lad'yanov V.I., Nikonova R.M., Larionova N.S., Aksenova V.V., Mukhgalin V.V., Rud' A.D. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation. Phys. Solid State. 2013. 55(6): 1319. https://doi.org/10.1134/S1063783413060206

Matysina Z. A., Zolotarenko Ol. D.,. Rudakova O. P., Akhanova N. Y., Pomytkin A. P., Zolotarenko An. D., Shchur D. V., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Zolotarenko A. D., Chymbai M. V., Zagorulko I. V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. 23(3): 510.

Sementsov Yu.I., Cherniuk O.A., Zhuravskyi S.V., Bo W., Voitko K.V., Bakalinska O.M., Kartel M.T. Synthesis and catalytic properties of nitrogen-containing carbon nanotubes. Himia, Fizika ta Tehnologia Poverhni. 2021. 12(2): 135. https://doi.org/10.15407/hftp12.02.135

Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology. 2007. P. 199. https://doi.org/10.1007/978-1-4020-5514-0_25

Zaginaichenko S.Y., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9

Rud A.D., Kiryan I.M. Quantitative analysis of the local atomic structure in disordered carbon. J. Non-Cryst. Solids. 2014. 386: 1. https://doi.org/10.1016/j.jnoncrysol.2013.11.010

Matvienko Y., Rud A., Polishchuk S., Zagorodniy Y., Rud N., Trachevski V. Effect of graphite additives on solid-state reactions in eutectic Al-Cu powder mixtures during high-energy ball milling. Appl. Nanosci. 2020. 10(8): 2803. https://doi.org/10.1007/s13204-019-01086-2

Boguslavskii L.Z., Rud' A.D., Kir'yan I.M., Nazarova N.S., Vinnichenko D.V. Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surf. Eng. Appl. Electrochem. 2015. 51(2): 105. https://doi.org/10.3103/S1068375515020027

Matysina Z. A, Zolotarenko Ol. D., Ualkhanova M., Rudakova O.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N. A. , Zolotarenko O.D., Chymbai M.V., Zagorulko I.V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.

Yakymchuk O.M., Perepelytsina O.M., Rud A.D., Kirian I.M., Sydorenko M.V. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. Phys. Status Solidi A. 2014. 211(12): 2778. https://doi.org/10.1002/pssa.201431358

Kartel N.T., Gerasimenko N.V., Tsyba N.N., Nikolaichuk A.D., Kovtun G.A. Synthesis and study of carbon sorbent prepared from polyethylene terephthalate. Russ. J. Appl. Chem. 2001. 74(10): 1765.https://doi.org/10.1023/A:1014894211046

Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 209.

Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanov Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., Rud' A.D. Phase transformations of carbon under extreme energy action. Tech. Phys. 2012. 57(2): 198. https://doi.org/10.1134/S106378421202017X

Rud A.D., Lakhnik A.M., Mikhailova S.S., Karban O.V., Surnin D.V., Gilmutdinov F.Z. Structure of Mg-C nanocomposites produced by mechano-chemical synthesis. J. Alloys Compd. 2011. 509(2): S592. https://doi.org/10.1016/j.jallcom.2010.10.155

Kartel M.T., Voitko K.V., Grebelna Y.V., Zhuravskyi S.V., Ivanenko K.O., Kulyk T.V., Makhno S.M., Sementsov Y.I. Changes in the structure and properties of graphene oxide surfaces during reduction and modification. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 179. https://doi.org/10.15407/hftp13.02.179

Ushakova L.M., Ivanenko K.I., Sigareva N.V., Terets M.I., Kartel M.T., Sementsov Yu.I. Influence of nanofiller on the structure and properties of macromolecular compounds. Phys. Chem. Solid State. 2022. 23(2): 394. https://doi.org/10.15330/pcss.23.2.394-400

Sementsov Y., Prikhod'ko G., Kartel M., Tsebrenko M., Aleksyeyeva T., Ulyanchychi N. Carbon nanotubes filled composite materials. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 183. https://doi.org/10.1007/978-94-007-0899-0_16

Harea E., Stoček R., Storozhuk L., Sementsov Y., Kartel N. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Appl. Nanosci. 2019. 9(5): 899. https://doi.org/10.1007/s13204-018-0797-6

Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo W., Bratus V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Appl. Surf. Sci. 2018. 434: 142.https://doi.org/10.1016/j.apsusc.2017.10.029

Kozak A.O., Porada O.K., Ivashchenko V.I., Ivashchenko L.A., Scrynskyy P.L., Tomila T.V., Manzhara V.S. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering. Appl. Surf. Sci. 2017. 425: 646. https://doi.org/10.1016/j.apsusc.2017.06.332

Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I. Simulations of indentation-induced phase transformations in crystalline and amorphous silicon. Phys. Rev. B. 2008. 78(3): 035205. https://doi.org/10.1103/PhysRevB.78.035205

Krupskaya T.V., Turov V.V., Barvinchenko V.M., Filatova K.O., Suvorova L.A., Iraci G., Kartel M.T. Influence of the "wetting-drying" compaction on the adsorptive characteristics of nanosilica A-300. Adsorpt. Sci. Technol. 2018. 36(1-2): 300. https://doi.org/10.1177/0263617417691768

Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. J. Non-Cryst. Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020

Barany S., Kartel N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid J. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020

Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102

Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 556. https://doi.org/10.15407/hftp13.02.190

Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039

Gun'ko V.M., Turov V.V., Protsak I., Krupska T.V., Pakhlov E.M., Zhang D. Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloid Interface Sci. Commun. 2020. 35: 100251. https://doi.org/10.1016/j.colcom.2020.100251

Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Materials. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409

Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.V., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. J. Colloid Interface Sci. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065

Sementsov Yu.I., Prikhod'ko G.P., Melezhik A.V., Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. In: Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. 2010. P. 347. https://doi.org/10.1007/978-90-481-2309-4_27

Gun'ko V.M., Lupascu T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids Surf., A. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084

Khamitova K.K., Kayupov B.A., Yegemova S.S., Gabdullin M.T., Abdullin Kh.A., Ismailov D.V., Kerimbekov D.S. The use of fullerenes as a biologically active molecule. Int. J. Nanotechnol. 2019. 16(1-3): 100. https://doi.org/10.1504/IJNT.2019.102396

Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chem. Phys. 2017. 483-484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007

Krupska T.V., Turova A.A., Un'Ko V.M., Turov V.V. Influence of highly dispersed materials on physiological activity of yeast cells. Biopolymers and Cell. 2009. 25(4): 290. https://doi.org/10.7124/bc.0007E8

Pylypova O., Havryliuk O., Antonin S., Evtukh A., Skryshevsky V., Ivanov I., Shmahlii S. Influence of nanostructure geometry on light trapping in solar cells. Appl. Nanosci. 2022. 12(3): 769. https://doi.org/10.1007/s13204-021-01699-6

Semchuk O.Y., Biliuk A.A., Havryliuk O.O., Biliuk A.I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance. Appl. Surf. Sci. Adv. 2021. 3: 100057. https://doi.org/10.1016/j.apsadv.2021.100057

Havryliuk O.O., Evtukh A.A., Pylypova O.V., Semchuk O.Y., Ivanov I.I., Zabolotnyi V.F. Plasmonic enhancement of light to improve the parameters of solar cells. Appl. Nanosci. 2020. 10(12): 4759. https://doi.org/10.1007/s13204-020-01299-w

Stavitskaya S.S., Mironyuk T.I., Kartel N.T., Strelko V.V. Sorption characteristics of "food fibers" in secondary products of processing of vegetable raw materials. Russ. J. Appl. Chem. 2001. 74(4): 592.https://doi.org/10.1023/A:1012706531317

Zakutevskii O.I., Psareva T.S., Strelko V.V., Kartel N.T. Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry. 2007. 49(1): 67. https://doi.org/10.1134/S1066362207010110

Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chem. J. Moldova. 2017. 12(1): 37. https://doi.org/10.19261/cjm.2017.401

Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids Surf., A. 2019. 570: 471. https://doi.org/10.1016/j.colsurfa.2019.03.056

Galysh V., Sevastyanova O., Kartel M., Lindström M.E., Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J. Therm. Anal. Calorim. 2017. 128(2): 1019. https://doi.org/10.1007/s10973-016-5984-7

Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I., Ivashchenko L.A., Rusakov G.V. Atomic and electronic structures of a-SiC:H from tight-binding molecular dynamics. J. Phys.: Condens. Matter. 2003. 15(24). 4119. https://doi.org/10.1088/0953-8984/15/24/305

Gabdullin M.T., Khamitova K.K., Ismailov D.V., Sultangazina M.N., Kerimbekov D.S., Yegemova S.S., Chernoshtan A., Schur D.V. Use of nanostructured materials for the sorption of heavy metals ions. IOP Conference Series: Materials Science and Engineering. 2019. 511(1): 12044. https://doi.org/10.1088/1757-899X/511/1/012044

Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. In: NATO Security through Science Series A: Chemistry and Biology. 2007. P. 365. https://doi.org/10.1007/978-1-4020-5514-0_47

Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. Int. J. Hydrogen Energy. 2008. 33(13): 3330. https://doi.org/10.1016/j.ijhydene.2008.03.064

Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. Int. J. Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087

Lakhnik A.M., Kirian I.M., Rud A.D. The Mg/MAX-phase composite for hydrogen storage. Int. J. Hydrogen Energy. 2022. 47(11): 727  https://doi.org/10.1016/j.ijhydene.2021.02.081

Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Hydrogenation of fullerite C60 in gaseous phase. In: NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7

Bogolepov V.A., Veziroglu A., Zaginaichenko S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011

Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russ. Phys. J. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7

Matysina Z.A. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen concentration. Russ. Phys. J. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874

Trefilov V.I., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable Energy. 1999. 16(1-4): 757. https://doi.org/10.1016/S0960-1481(98)00273-0

Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. Int. J. Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D

Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. Int. J. Hydrogen Energy. 994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5

Matysina Z.A., Gavrylyuk N.A., Kartel M., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko A.D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069

Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5

Rud A.D., Schmidt U., Zelinska, G.M., Lakhnik, A.M., Kolbasov G.Ya., Danilov M.O. Atomic structure and hydrogen storage properties of amorphous-quasicrystalline Zr-Cu-Ni-Al melt-spun ribbons. J. Non-Cryst. Solids. 2007. 353(32-40): 3434. https://doi.org/10.1016/j.jnoncrysol.2007.05.095

Matysina Z.A., Zaginaichenko S.Yu. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. J. Alloys Compd. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9

Lytvynenko Yu.M., Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9

Matysina Z.A., Zaginaichenko, S.Y. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russ. Phys. J. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0

Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Perekos A.E., Kolbasov G.Ya., Danilov M.O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds. J. Alloys Compd. 2005. 404-406: 515. https://doi.org/10.1016/j.jallcom.2004.12.174

Zaginaichenko S.Y., Matysina Z.A., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. Int. J. Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088

Zaginaichenko S.Y., Zaritskii D.A., Matysina Z.A., Veziroglu T.N., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. Int. J. Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089

Matysina Z.A., Zaginaichenko S.Y. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Phys. Met. Metall. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079

Tikhotskii S.A, Fokin I.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062

Kulnitsky B.A. Doctoral (Physical and Mathematical Sciences). Thesis. (Moscow, 2010). [in Russian].

Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(3): 259.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina M., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofiz. Noveishie Tekhnol. 2022. 44(3): 343.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 415.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Tarasenko Yu.O., Zagorulko I.V., Zolotarenko A. D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofiz. Noveishie Tekhnol. 2021. 43(10): 1417.

Havryliuk O.O., Semchuk O.Y. Formation of periodic structures on the solid surface under laser irradiation. Ukr. J. Phys. 2017. 62(1): 20. https://doi.org/10.15407/ujpe62.01.0020

Ivashchenko V.I., Shevchenko V.I. Effects of short-range disorder upon electronic properties of a-SiC alloys. Appl. Surf. Sci. 2001. 184(1-4): 137. https://doi.org/10.1016/S0169-4332(01)00671-7

Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Width of the surface plasmon resonance line in spherical metal nanoparticles. Semicond. Phys. Quantum Electron. Optoelectron. 2020. 23(3): 308.

Baglyuk G.A., Poznyak L.A. The sintering of powder metallurgy high-speed steel with activating additions. Powder Metall. Met. Ceram. 2002. 41(7-8): 366. https://doi.org/10.1023/A:1021113025628

Ilyin A.P., Mostovshchikov A.V., Root L.O., Zmanovskiy S.V., Ismailov D.V., Ruzieva G.U. Effect of beta-radiation exposure on the parameters of aluminum micropowders activity. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019. 330(8): 87.

Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I. Phase transformation B1 to B2 in TiC, TiN, ZrC and ZrN under pressure. Condens. Matter Phys. 2013. 16(3): 33602. https://doi.org/10.5488/CMP.16.33602

Onoprienko A.A., Ivashchenko V.I., Dub S.N., Khyzhun O.Y., Timofeeva I.I. Microstructure and mechanical properties of hard Ti-Si-C-N films deposited by dc magnetron sputtering of multicomponent Ti/C/Si target. Surf. Coat. Technol. 2011. 205(21-22): 5068. https://doi.org/10.1016/j.surfcoat.2011.05.009

Khomenko E.V., Baglyuk G.A., Minakova R.V. Effect of deformation processing on the properties of Cu-50% Cr composite. Powder Metall. Met. Ceram. 2009. 48(3-4): 211. https://doi.org/10.1007/s11106-009-9108-9

Kozak A.O., Ivashchenko V.I., Porada O.K., Ivashchenko L.A., Tomila T.V., Manjara V.S., Klishevych G.V. Structural, optoelectronic and mechanical properties of PECVD Si-C-N films: An effect of substrate bias. Mater. Sci. Semicond. Process. 2018. 88: 65. https://doi.org/10.1016/j.mssp.2018.07.023

Semchuk O.Y., Biliuk A.A., Havryliuk O.O. The Kinetic Theory of the Width of Surface Plasmon Resonance Line in Metal Nanoparticles. Springer Proceedings in Physics. 2021. 264: 3. https://doi.org/10.1016/j.apsadv.2021.100057

Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I., Olifan E.I. First-principles study of phase stability of stoichiometric vanadium nitrides. Phys. Rev. B. 2011. 84(17): 174108. https://doi.org/10.1103/PhysRevB.84.174108

Baglyuk G.A., Terekhov V.N., Ternovoi Y.F. Structure and properties of powder austenitic die steels. Powder Metall. Met. Ceram. 2006. 45(7-8): 317. https://doi.org/10.1007/s11106-006-0083-0

Tolochyn O.I., Baglyuk G.A., Tolochyna O.V., Evych Y.I., Podrezov Y.M., Molchanovska H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Mater. Sci. 2021. 56(4): 499. https://doi.org/10.1007/s11003-021-00456-y

Ivashchenko V.I., Vepřek S. First-principles molecular dynamics study of the thermal stability of the BN, AlN, SiC and SiN interfacial layers in TiN-based heterostructures: Comparison with experiments. Thin Solid Films. 2013. 545: 391. https://doi.org/10.1016/j.tsf.2013.08.047

Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids and Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034

Abdullin K.A., Gabdullin M.T., Gritsenko L.V., Ismailov D.V., Kalkozova Z.K., Kumekov S.E., Mukash Z.O., Sazonov A.Y., Terukov E.I. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma. Semiconductors. 2016. 50(8): 1010. https://doi.org/10.1134/S1063782616080029

Mostovshchikov A.V., Ilyin A.P., Zabrodina I.K., Root L.O., Ismailov D.V. Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability. Key Eng. Mater. 2018. 769: 146. https://doi.org/10.4028/www.scientific.net/KEM.769.146

Baglyuk G.A., Ivasyshyn O.M., Stasyuk O.O., Savvakin D.G. Sintered metals and alloys: The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds. Powder Metall. Met. Ceram. 2017. 56(1-2): 59. https://doi.org/10.1007/s11106-017-9870-z

Baglyuk G.A., Sosnovskii L.A., Volfman V.I. Effect of carbon content on the properties of sintered steels doped with manganese and copper. Powder Metall. Met. Ceram. 2011. 50(3-4): 189. https://doi.org/10.1007/s11106-011-9317-x

Baglyuk G.A., Tolochin A.I., Tolochina A.V., Yakovenko R.V., Gripachevckii A.N., Golovkova M.E. Effect of Process Conditions on the Structure and Properties of the Hot-Forged Fe3Al Intermetallic Alloy. Powder Metall. Met. Ceram. 2016. 55(5-6): 297. https://doi.org/10.1007/s11106-016-9805-0

Baglyuk G.A., Poznyak L.A. Sintered wear-resistant iron-based materials. I. Materials fabricated by sintering and impregnation. Poroshkovaya Metallurgiya. 2001. 1-2: 44.

Sizonenko O.N., Baglyuk G.A., Taftai E.I., Zaichenko A.D., Lipyan E.V., Torpakov A.S., Zhdanov A.A., Pristash N.S. Dispersion and carburization of titanium powders by electric discharge. Powder Metall. Met. Ceram. 2013. 52(5-6): 247. https://doi.org/10.1007/s11106-013-9520-z

Ivashchenko V.I., Veprek S., Turchi P.E.A., Shevchenko V.I., Leszczynski J., Gorb L., Hill F. First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films. 2014. 564: 284. https://doi.org/10.1016/j.tsf.2014.05.036

Baglyuk G.A., Napara-Volgina S.G., Vol'Fman V.I., Mamonova A.A., Pyatachuk S.G. Thermal synthesis of Fe-B 4C powder master alloys. Powder Metall. Met. Ceram. 2009. 48(7-8): 381. https://doi.org/10.1007/s11106-009-9156-1

DeBour J. Dynamic nature of adsorption. (Moscow: Publishing house of foreign. lit., 1988).

Khomenko A.Yu., Tkachenko S.I. Determination of the specific surface of porous materials by the BET and Araganovich methods. (Moscow: Publishing House of the Moscow Engineering and Technical Institute, 2014).

Hildebrandt M., Vershinina E.P., Marchenko N.V. Metallurgy of non-ferrous metals. (Moscow: Publishing house of literature on metallurgy, 2009).

Antsiferov V.N., Bezrudny F.F., Balanchikov L.N. New materials. (Moscow: Metallurgy Publishing House, 2002).

Gusev R.I., Rempel A.A. Nanocrystalline materials. (Moscow: Metallurgy Publishing House, 2001).

Andrievsky R.A., Ragulya A.V. Nanostructured materials. (Moscow: RDF, 2005).

Danyushina G.A., Shishka V.G., Berezhnoy Yu.M. Preparation of copper nanopowders modified with water-soluble polymers. Part 2. ( Novocherkassk: "Engineering Bulletin of the Don", 2015).

Zotov E.S. Ph.D. (Tech. Sci.) Thesis. (Moscow, 2008). [in Russian].

Gusev A.I. Nanomaterials, nanostructures, nanotechnologies. (Moscow: Physics and Mathematics. ed., 2005).

Patent C22B15; 2426805. Eremenko N.K. Method for obtaining nanodispersed copper powder. 2004.

Semenyuk Yu.S., Obraztsova I.I., Eremenko N.K. Methods for obtaining nano-dispersed powders. (Moscow: Nauka Publishing House, 2005).




DOI: https://doi.org/10.15407/hftp14.03.393

Copyright (©) 2023 Ol. D. Zolotarenko, E. P. Rudakova, An. D. Zolotarenko, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, V. A. Lavrenko, M. T. Gabdullin, Yu. I. Zhirko, A. D. Zolotarenko, Yu. O. Tarasenko, M. V. Chymbai, O. O. Havryliuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.