Хімія, фізика та технологія поверхні, 2011, 2 (1), 61-75.

Вплив фазового вмісту атмосферних аерозолів на кінетику їх взаємодії з леткими домішками



V. I. Bogillo

Анотація


Розглянуто вплив відносної вологості повітря на кінетику взаємодії летких домішок з компонентами атмосферних аерозолів. Запропоновано співвідношення між вірогідністю взаємодії та величиною відносної вологості, що представляють відповідні експериментальні залежності для різних систем. Для опису взаємодії газу з нелет­ким реагентом, що знаходиться в об’ємі сферичної рідкої частинки аерозолю, використано кінетичну модель "опорів", і розглянуто випадки обмеження швидкості загального процесу його окремими стадіями. Отримано вирази для відношення швидкостей поверхневої та об’ємної реакції леткого домішку з реагентом в об’ємі частинки та показано, що це відношення зростає при зменшенні розміру атмосферних частинок.

Повний текст:

PDF (Русский)

Посилання


Богилло В.И. Кинетика реакций летучих примесей с поверхностью компонентов атмосферных аэрозолей // Химия, физика и технология поверхности. – 2009. – № 15. – С. 4–14.

Pokrovskiy V.A., Bogillo V.I., Dabrowski A. Adsorption and chemisorption of organic pollutants on the solid aerosols surface // Adsorption and its Application in Industry and Environmental Protection / Ed. A. Dabrowski. – Amsterdam: Elsevier, 1999. – P. 571–634.

Богилло В.И. Влияние состава минеральных аэрозолей на кинетику гетерогенного стока летучих примесей из атмосферы // Химия, физика и технология поверхности. – 2010. – Т. 1, № 1. – С. 36–47.

Богилло В.И. Влияние морфологии частиц атмосферных аэрозолей на кинетику их взаимодействия с летучими примесями // Химия, физика и технология поверхности. – 2010. – Т. 1, № 2. – С. 148–160.

Xu C., Koel B.E. Adsorption kinetics on chemically modified or bimetallic surfaces // J. Chem. Phys. – 1994. – V. 100, N 1. – P. 664–670.

Yu J.C., Ming C.Z., Li W.H. et al. Atmospheric heterogeneous reaction of acetone: adsorption and desorption kinetics and mechanisms on SiO2 particles // Chin. Sci. Bull. – 2008. – V. 53, N 7. – P. 1004–1010.

Gustafsson R.J., Orlov A., Griffiths P.T. et al. Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry // Chem. Commun. – 2006. – V. 37. – P. 3936–3938.

Davis M.E., Davis R.J. Fundamentals of Chemical Reaction Engineering. – New York: McGraw-Hill Science, 2003. – 368 p.

Liu Y., Cain J.P., Wang H. et al. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach // J. Phys. Chem. A. – 2007. – V. 111, N 40. – P. 10026–10043.

Liu Y., Gibson E.R., Cain J.P. et al. Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity // J. Phys. Chem. A. – 2008. – V. 112, N 7. – P. 1561–1571.

Vlasenko A., Sjogren S., Weingartner E. et al. Effect of humidity on nitric acid uptake to mineral dust aerosol particles // Atmos. Chem. Phys. Discuss. – 2005. – V. 5, N 6. – P. 11821–11860.

Park J.-H. An experimental study of OH uptake by surfaces of tropospheric importance under dry and wet conditions // PhD Thesis in chemistry, Massachusetts Institute of Technology, USA. – 2008. – 170 p.

Hanson D.R. Surface-specific reactions on liquids // J. Phys. Chem. – 1997. – V. 101, N 25. – P. 4998–5001.

Worsnop D.R., Morris J.W., Shi Q. et al. A chemical kinetic model for reactive transformations of aerosol particles // Geophys. Res. Lett. – 1996. – V. 29, N 20. – P. 57–60.

Donaldson S.J., Anderson D. Adsorption of atmospheric gases at the air-water interface. 2. C1−C4 alcohols, acids, and acetone // J. Phys. Chem. A. – 1999. – V. 103, N 7. – P. 871–876.

Strey R., Viisanen Y., Aratono M. et al. On the necessity of using activities in the Gibbs equation // J. Phys. Chem. B. – 1999. – V. 103, N 43. – P. 9112–9116.

Danckwerts P.V. Adsorption and simultaneous diffusion and chemical reaction into particles of various shapes and into falling drops // Trans. Faraday Soc. – 1951. – V. 47. – P. 1014–1023.

Girardet C., Toubin C. Molecular atmospheric pollutant adsorption on ice: a theoretical survey // Surf. Sci. Rep. – 2001. – V. 44, N 7–8. – P. 159–238.

Shiraiwa M., Garland R.M., Poschl U. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3 // Atmos. Chem. Phys. – 2009. – V. 9. – P. 9571–9586.

Jacob D.J. Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate // J. Geophys. Res. – 1986. – V. 91, N 9. – P. 9807–9826.

Taketani F., Kanaya Y., Akimoto H. Kinetics of heterogeneous reactions of HO2 radical at ambient concentration levels with (NH4)2SO4 and NaCl aerosol particles // J. Phys. Chem. A. – 2008. – V. 112, N 11. – P. 2370–2377.

Moise T., Talukbar R.K., Frost G.J. et al. Reactive uptake of NO3 by liquid and frozen organics // J. Geophys. Res. – 2002. – V.107, N 1–2. – P. 4014–4022.

Thornton J.A., Braban C.F., Abbatt J.P.D. N2O5 hydrolysis on sub-micron aerosols: the effect of relative humidity, particle phase, and particle size // Phys. Chem. Chem. Phys. – 2003. – V. 5. – P. 4593–4603.

McNeill V.F., Wolfe G.M., Thornton J.A. The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process // J. Phys. Chem. A. – 2007. – V. 111, N 6. – P. 1073–1083.

Katrib Y., Biskos G., Buseck P.R. et al. Ozonolysis of mixed oleic-acid/stearic-acid particles: reaction kinetics and chemical morphology // J. Phys. Chem. A. – 2005. – V. 109, N 48. – P. 10910–10919.

Hearn J.D., Lovett A.J., Smith G.D. Ozonolysis of oleic acid particles: evidence for surface reaction and secondary reactions involving Criegee intermediates // Phys. Chem. Chem. Phys. – 2005. – V. 7. – P. 501–511.

Thomas J.L., Jimenez-Aranda A., Finlayson-Pitts B.J. et al. Gas-phase molecular halogen formation from NaCl and NaBr aerosols: when are interface reactions important? // J. Phys. Chem. A. – 2006. – V. 110, N 5. – P. 1859–1867.

Strekowski R.S., Remorov R., George Ch. Direct kinetic study of the reaction of Cl2.- radical anions with ethanol at the air-water interface // J. Phys. Chem. A. – 2003. – V. 107, N 14. – P. 2497–2504.

Reid J.P., Sayer R.M. Heterogeneous atmospheric aerosol chemistry: laboratory studies of chemistry on water droplets // Chem. Soc. Rev. – 2003. – V. 32, N 2. – P. 70–79.

Shi Q., Balair S.D., Francisco J S. et al. On the interactions between atmospheric radicals and cloud droplets: a molecular picture of the interface // Proc. Nat. Acad. Sci. USA – 2003. – V. 100, N. 17. – P. 9686–9690.

Ahmed M., Apps C.J., Hughes C. et al. Adsorption of organic molecules on large water clusters // J. Phys. Chem. A. – 1997. – V. 101. – P. 1250–1253.

Tarbuck T.L., Richmond G.L. Adsorption and reaction of CO2 and SO2 at a water surface // J. Am. Chem. Soc. – 2006. – V. 128, N 10. – P. 3256–3267.

Raja S., Valsaraj K.T. Adsorption and transport of gas-phase naphthalene on micron-size fog droplets in air // Environ. Sci. Technol. – 2004. – V. 38, N 3. – P. 763–768.

Petersen P.B., Saykally R.J. On the nature of ions at the liquid water surface // Annu. Rev. Phys. Chem. – 2006. – V. 57. – P. 333–364.

Knipping E.M., Lakin M.J., Foster K.L. et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols // Science. – 2000. – V. 288. – P. 301–306.

Enami S.; Vecitis C.D.; Cheng J. et al. Iodide-mediated gaseous ozone oxidation of aerosol bromide and chloride as a possible source of gaseous marine halogens // J. Phys. Chem. A. – 2007. – V. 111. – P. 8749–8752.

McFiggans G., Plane J.M.C., Allan B.J. et al. A modelling study of iodine chemistry in the marine boundary layer // J. Geophys. Res. – 2000. – V. 105, N 11. – P. 14371–14385.

O’Dowd C., de Leeuw G. Marine aerosol production: A review of the current know­ledge // Philos. Trans. R. Soc. A. – 2007. – V. 365. – P. 1753–1774.

Spracklen D.V., Arnold S.R., Sciare J. et al. Globally significant oceanic source of organic carbon aerosol // Geophys. Res. Lett. – 2008. – V. 35. – doi: 10.1029/2008GL033359.

Richter U. Factors influencing methyl iodide production in the ocean and its flux to the atmosphere // PhD Thesis. – Christian-Albrechts University, Kiel, Germany, 2004. – 117 p.

Williams J., Gros V., Atlas E. et al. Possible evidence for a connection between methyl iodide emissions and Saharan dust // J. Geophys. Res. Atmos. – 2007. – V. 112. – doi: 10.1029/2005JD006702.

Batsaikhan A. Reactive organic species on natural dust // PhD Thesis. – Ruprecht-Karls University, Heidelberg, Germany, 2007. – 101 p.

Keppler F., Eiden R., Nirdan V. et al. Halocarbons produced by natural oxidation processes during degradation of organic matter // Nature. – 2000. – V. 403. – P. 298–301.

Hamilton J.T.G., McRoberts W.C., Keppler F. et al. Chloride methylation by plant pectin: an efficient environmentally significant process // Science – 2003. – V. 301. – P. 206–209.

Wingenter O.W., Sive B.C., Blake D.R. et al. Unexplained enhancement of CH3Br in the Arctic and sub-Arctic lower troposphere during TOPSE spring 2000 // Geophys. Res. Lett. – 2003. – V. 30, N 22. – doi: 10.1029/2003GL018159.

Carpenter L J., Hopkins J.R., Jones C.E. et al. Abiotic source of reactive organic halogens in the Sub-Arctic atmosphere? // Environ. Sci. Technol. – 2005. – V. 39. – P. 8812–8816.

Vione D., Maurino V., Minero C. et al. Photochemical reactions in the tropospheric aqueous phase and on particulate matter // Chem. Soc. Rev. – 2006. – V. 35. – P. 441–453.

Bogillo V.I., Bazylevska M.S., Borchers R. Past and future for ozone-depleting halocarbons in Antarctic environment // Role of interfaces in environmental protection / Ed. S. Barany. – Dordrecht: Kluwer Acad. Publ. – 2003. – P. 161–168.

Богилло В.И., Борхерс Р., Базилевская М.С. Влияние глобального потепления на содержание летучих органических примесей и их сток в леднике о. Галиндез, Антарктика // Материалы гляциологических исследований. – 2007. – Вып. 102. – С. 127–134.




Copyright (©) 2011 V. I. Bogillo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.