Chemistry, Physics and Technology of Surface, 2024, 15 (1), 119-129.

Photocatalytic discoloration of organic dyes in water dispersion medium by anatase-based binary nanocomposites



DOI: https://doi.org/10.15407/hftp15.01.119

O. M. Lavrynenko, M. M. Zahornyi, O. Yu. Pavlenko, E. Paineau

Abstract


Currently, textile and food industries produce a significant volume of sewages containing azo dyes and other organic pollutants. These effluents are serious environmental threats, so new methods for their treatment and the degradation of azo dyes are attracting much attention. Composite materials based on TiO2 modified by noble metals and nanoceria show high activity in the photodegradation of organic contaminates and are proposed for hydrogen synthesis as well. To optimize the treatment of contaminants, different processes can combine including the strategies of adsorption, photoluminescence, photocatalysis, etc. The synthesized TiO2-based nanomaterials (sols, powders) will be exploited for bioremediation due to their small size and surface plasmon resonance from noble metals. Binary nanocomposites based on TiO2 were obtained by the chemical co-precipitation method from solutions of titanium tetraisopropoxide (TTIP) and inorganic salts of cerium, silver, and palladium. It has been stated that TiO2 is represented by anatase with primary particle size (CSR) from 8.5 to 16.8 nm, depending on the nature and concentration of the dopant. It is shown that Ag is reduced on the surface of anatase particles and blocks their growth, while Pd and Ce penetrate the titanium dioxide matrix in the form of small clusters with the deformation of the anatase crystal lattice. Nanocomposite particles formed loose and fragile aggregates, which spontaneously dispersed in solutions of dyes with the formation of colloid-stable sols, required the use of a centrifugal field for their sedimentation. Nanoparticles of TiO2&Pd were electronegative and others were electropositive according to the values 4.1÷9.6 of ZPC (zero point of charge). It was shown that the particles of all composites sorbed Methylene Blue (MB) without photocatalytic activity under the visible light to any dye. Moreover, anionic dyes such as Orange-G (Or-G) and Methyl Orange (MO) were excellently discolorated in the presence of TiO2&Pd system; cationic dyes of MB and Rhodamine B (RhB) discolorated too with the TiO2, TiO2&CeO2, and TiO2&Ag systems under UV light action. As such, photocatalysis tests showed that Orange-G’s and MO’s discoloration was higher for TiO2&Pd (2 wt. %) and TiO2 systems with the correlation coefficient R2 0.999.


Keywords


TiO2-based binary nanocomposites; anatase; TiO2&Ag; TiO2&Pd; TiO2&CeO2; photocatalysis; UV; discoloration of anionic and cationic dyes; Methyl Orange; Orange-G; Methylene Blue; Rhodamine B

Full Text:

PDF

References


1. Zangeneh H., Zinatizadeh A.A.L., Habibi M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015. 26: 1. https://doi.org/10.1016/j.jiec.2014.10.043

2. Zeng M. Influence of TiO2 Surface Properties on Water Pollution Treatment and Photocatalytic Activity. Bull. Korean Chem. Soc. 2013. 34(3): 953. https://doi.org/10.5012/bkcs.2013.34.3.953

3. Tahir M., Tasleem S., Tahir B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy. 2020. 45(32): 15985. https://doi.org/10.1016/j.ijhydene.2020.04.071

4. Nur A.S.M., Sultana M., Mondal A., Islam S., Nur F.R., Islam A., Sumi M.S.A. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation. J. Water Process Eng. 2022. 47:102728. https://doi.org/10.1016/j.jwpe.2022.102728

5. Eddy D.R., Permana M.D., Sakti L.K., Sheha G.A.N., Solihudin, Hidayat S., Takei T., Kumada N., Rahayu I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials. 2023. 13(4): 704. https://doi.org/10.3390/nano13040704

6. Sescu A.M., Favier L., Lutic D., Soto-Donoso N., Ciobanu G., Harja M. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous OrganicWater Pollutants at Ambient Conditions. Water. 2021. 13(1): 19. https://doi.org/10.3390/w13010019

7. Jaramillo-Fierro X., León R. Effect of Doping TiO2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide - A Comparative Study. Nanomaterials. 2023. 13(6): 1068. https://doi.org/10.3390/nano13061068

8. Subramanian V., Wolf E., Kamat P.V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B. 2001. 105(46): 11439. https://doi.org/10.1021/jp011118k

9. Seery M.K., George R., Floris P., Pilla S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol., A. 2007. 189(2-3): 258. https://doi.org/10.1016/j.jphotochem.2007.02.010

10. Selvaraj R., Li X. Enhanced Photocatalytic Activity of TiO2 by Doping with Ag for Degradation of 2,4,6-Trichlorophenol in Aqueous Suspension. J. Mol. Catal. A: Chem. 2006. 243(1): 60. https://doi.org/10.1016/j.molcata.2005.08.010

11. Torrell M., Adochite R.C., Cunha L., Barradas N.P., Alves E., Beaufort M.F., Rivière J.P., Cavaleiro A., Dosta S., Vaz F. Surface Plasmon Resonance Effect on the Optical Properties of TiO2 Doped by Noble Metals Nanoparticles. J. Nano Res. 2012. 18-19: 177. https://doi.org/10.4028/www.scientific.net/JNanoR.18-19.177

12. Harja M., Sescu A.M., Favier L., Lutic D. Doping Titanium Dioxide with Palladium for Enhancing the Photocatalytic Decontamination and Mineralization of a Refractory Water Pollutant. Rev. Chim. 2020. 71(7): 145. https://doi.org/10.37358/RC.20.7.8232

13. Bai X., Lv L., Zhang X., Hua Z. Synthesis and photocatalytic properties of palladium-loaded three dimensional flower-like anatase TiO2 with dominant {001} facets. J. Colloid Interface Sci. 2016. 467: 1. https://doi.org/10.1016/j.jcis.2015.12.053

14. Wang J., Meng F., Xie W., Gao Ch., Zha Y., Liu D., Wang P. TiO2/CeO2 composite catalysts: synthesis, characterization and mechanism analysis. Appl. Phys. A. 2018. 124: 645. https://doi.org/10.1007/s00339-018-2027-1

15. Yagub M.T., Sen T.K., Afroze S., Ang H.M. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 2014. 209: 172. https://doi.org/10.1016/j.cis.2014.04.002

16. Riera-Torres M., Gutiérrez-Bouzán C., Crespi M. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination. 2010. 252(1-3): 53. https://doi.org/10.1016/j.desal.2009.11.002

17. Akpan U.G., Hameed B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard Mater. 2009. 170(2-3): 520. https://doi.org/10.1016/j.jhazmat.2009.05.039

18. Alejandra I.-S., Valencia A., Nikolay R., Vásquez L., Felipe A. Effect of pH and Themperature on photocatalytic oxidation of methyl orange using black sand as photocatalyst. Revista Tiempo Económico. 2017. 1(1).

19. Pillai I.M.S., Gupta A.K. Effect of inorganic anions and oxidizing agents on electrochemical oxidation of methyl orange, malachite green and 2,4-dinitrophenol. J. Electroanal. Chem. 2015. 762: 66. https://doi.org/10.1016/j.jelechem.2015.12.027

20. Leroy P., Tournassat C., Bizi M. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. J. Colloid Interface Sci. 2011. 356(2): 442. https://doi.org/10.1016/j.jcis.2011.01.016

21. Vanlalhmingmawia Ch., Lalhriatpuia Ch., Tiwari D., Kim D.-J. Noble Metal Doped TiO2 Thin Films In The Efficient Removal of Mordant Orange-1: Insights of Degradation Process. Research Square. 2021. 29: 51732. https://doi.org/10.21203/rs.3.rs-661533/v1

22. Nazar M.F., Shah S.S., Khosa M.A. Interaction of Azo Dye with Cationic Surfactant Under Different pH Conditions. J. Surfactants. Deterg. 2010. 13: 529. https://doi.org/10.1007/s11743-009-1177-8

23. Kosmulski M. The pH-Dependent Surface Charging and the Points of Zero Charge. J. Colloid Interface Sci. 2002. 253: 77. https://doi.org/10.1006/jcis.2002.8490

24. Lavrynenko O.M., Zahornyi M.M., Paineau E., Pavlenko O.Yu., Tyschenko N.I., Bykov O.I. Characteristic of TiO2&Ag0 nanocomposites formed via transformation of metatitanic acid and titanium(IV) isopropoxide. Materials Today: Proceedings. 2022. 62(15): 7664. https://doi.org/10.1016/j.matpr.2022.03.002

25. Lavrynenko O.M., Zahornyi M.M., Paineau E.·Pavlenko O.Yu. Synthesis of active binary and ternary TiO2-based nanocomposites for efficient dye photodegradation. Appl. Nanosci. 2023. 13: 7365. https://doi.org/10.1007/s13204-023-02909-z

26. Gondal M.A., Rashid S.G., Dastageer M.A., Zubair S.M., Ali M.A., Lienhard J.H., McKinley G.H., Varanasi K.K. Sol-Gel Synthesis of Au/Cu-TiO2 Nanocomposite and Their Morphological and Optical Properties. IEEE Photonics Journal. 2013. 5(3): 2201908. https://doi.org/10.1109/JPHOT.2013.2262674

27. Evcin A., Arlı E., Baz Z., Esen R., Sever E.G. Characterization of Ag-TiO2 Powders Prepared by Sol-Gel Process. Acta Phys. Pol. A. 2017. 132(3): 608. https://doi.org/10.12693/APhysPolA.132.608

28. Zuas O., Hamim N. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals. Mater. Sci. 2013. 19(4): 443. https://doi.org/10.5755/j01.ms.19.4.2732

29. Azouri A., Ge M., Xun K., Sattler K., Lichwa J., Ray Ch. Zeta potential studies of titanium dioxide and silver nanoparticle composites in water-based colloidal suspension. In: Proceedings of Multifunctional Nanocomposites. 20-22 September 2006, Honolulu, Hawaii. https://doi.org/10.1115/MN2006-17072

30. Chen Y.-W., Lee D.-Sh. Photocatalytic Destruction of Methylene Blue on Ag@TiO2 with Core/Shell Structure. Open Access Library Journal. 2014. 1: 1. https://doi.org/10.4236/oalib.1100504

31. Yahodynets P.I., Skrypska O.V., Andriichuk Yu.M. Khimiia barvnykiv: Navchalnyi posibnyk. (Chernivtsi, 2019). [in Ukrainian].

32. Zhygotsky A., Rynda E., Kochkodan V., Zagorny M., Lobunets T., Kuzhmenko L., Ragulya A. Effect of dispersity and porous structure of TiO2 nanopowders on photocatalytic destruction of azodyes in aqueous solutions. J. Chem. Chem. Eng. 2013. 7: 949.

33. Venkatamaran K. The Chemistry of Synthetic Dyes. (Academy Press: London, 1953).




DOI: https://doi.org/10.15407/hftp15.01.119

Copyright (©) 2024

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.