Хімія, фізика та технологія поверхні, 2015, 6 (4), 504-519.

Рівноваги адсорбції аніонних барвників Еозину жовтого та Активного блакитного аміновмісними ормосилами



DOI: https://doi.org/10.15407/hftp06.04.504

O. S. Tkachenko, A. A. Mikhraliieva, A. V. Panteleimonov, R. V. Sukhov, Yu. V. Kholin

Анотація


Досліджено адсорбцію аніонних барвників Еозину жовтого та Активного блакитного аміновмісними ормосилами. Протолітичні рівноваги за участю іммобілізованих амінів охарактеризовано за результатами зондування поверхні матеріалів іонами Н+. Адсорбційна модель Ленгмюра є занадто спрощеною і не забезпечує коректного опису адсорбції барвників. Адекватного опису адсорбційних рівноваг при коректному врахуванні хімізму адсорбції барвників досягнуто в моделі полідентатного зв’язування. Дана модель враховує іонний механізм зв’язування барвників і вплив на адсорбцію ефектів позитивної кооперативності. Ефективна сорбційна ємність досліджених матеріалів по відношенню до вивчених барвників досягає 100 мкмоль·г–1. Високі значення констант адсорбційних рівноваг доводять, що аміновмісні ормосили є ефективними адсорбентами для вилучення аніонних барвників. Адсорбцію барвників слід проводити зі слабкокислих розчинів, а для регенерації адсорбентів створювати у розчинах слабколужне середовище. Аміновмісні ормосили повністю зберігають сорбційну ємність після щонайменше п’яти циклів адсорбції-десорбції.

Ключові слова


аміновмісні ормосили; Еозин жовтий; Активний блакитний; іонний обмін; адсорбція

Повний текст:

PDF

Посилання


1. İyim T.B., Güçlü G. Removal of basic dyes from aqueous solutions using natural clay. Desalination. 2009. 249: 1377. https://doi.org/10.1016/j.desal.2009.06.020 

2. Binupriya A.R., Sathishkumar M., Ku C.S., Yun S.-Il. Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides. Colloid. Surf. B. 2010. 76: 179. https://doi.org/10.1016/j.colsurfb.2009.10.031 

3. Bayramoglu G., Celik G., Arica M.Y. Biosorption of Reactive Blue 4 dye by native and treated fungus Phanerocheate chrysosporium: Batch and continuous flow system studies. J. Hazard. Mater. 2006. 137(3): 1689. https://doi.org/10.1016/j.jhazmat.2006.05.005 

4. Pavan F.A., Dias S.L.P., Lima E.C., Benvenutti E.V. Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes Pigm. 2008. 76(1): 64. https://doi.org/10.1016/j.dyepig.2006.08.027 

5. Golder A.K., Hridaya N., Samanta A.N., Ray S. Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes. J. Hazard. Mater. 2005. 127(1–3): 134. https://doi.org/10.1016/j.jhazmat.2005.06.032 

6. Ferella F., Michelis I.D., Zerbini C., Vegliò F. Advanced treatment of industrial wastewater by membrane filtration and ozonization. Desalination. 2013. 313: 1. https://doi.org/10.1016/j.desal.2012.11.039 

7. Hassan H., Hameed B.H. Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chem. Eng. J. 2011. 171(3): 912. https://doi.org/10.1016/j.cej.2011.04.040 

8. Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006. 97(9): 1061. https://doi.org/10.1016/j.biortech.2005.05.001 

9. Alver E., Metin A.Ü. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem. Eng. J. 2012. 200–202: 59. https://doi.org/10.1016/j.cej.2012.06.038 

10. Wawrzkiewicz M. Removal of C.I. Basic Blue 3 dye by sorption onto cation exchange resin, functionalized and non-functionalized polymeric sorbents from aqueous solutions and wastewaters. Chem. Eng. J. 2013. 217: 414. https://doi.org/10.1016/j.cej.2012.11.119 

11. Kyzas G.Z., Fu J., Matis K.A. The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Mater. 2013. 6(11): 5131. https://doi.org/10.3390/ma6115131 

12. Anbia M., Salehi S. Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigm. 2012. 94(1): 1. https://doi.org/10.1016/j.dyepig.2011.10.016 

13. Yang H., Feng Q. Direct synthesis of pore-expanded amino-functionalized mesoporous silicas with dimethyldecylamine and the effect of expander dosage on their characterization and decolorization of sulphonated azo dyes. Microporous Mesoporous Mater. 2010. 135(1–3): 124. https://doi.org/10.1016/j.micromeso.2010.06.019 

14. Rehman F., Volpe P.L.O., Airoldi C. Free amino and imino-bridged centres attached to organic chains bonded to structurally ordered silica for dye removal from aqueous solution. J. Environ. Manage. 2014. 133: 135. https://doi.org/10.1016/j.jenvman.2013.11.042 

15. Cestari A.R., Vieira E.F.S., Vieira G.S., da Costa L.P., Tavares A.M.G., Loh W., Airoldi C. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant—The temperature dependence and a thermodynamic multivariate analysis. J. Hazard. Mater. 2009. 161(1): 307. https://doi.org/10.1016/j.jhazmat.2008.03.091 

16. Tkachenko O., Panteleimonov A., Padalko I., Korobov A., Gushikem Y., Kholin Y. Silica functionalized with 1-propyl-3-methylimidazolium chloride as an efficient adsorbent for the removal of Eosin Yellow and Reactive Blue 4. Chem. Eng. J. 2014. 254: 324. https://doi.org/10.1016/j.cej.2014.05.117 

17. Echeverria J.C., Vicente P., Estella J., Garrido J.J. A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film. Talanta. 2012. 99: 433. https://doi.org/10.1016/j.talanta.2012.06.007 

18. Tkachenko O., Rahim A., Baraban A., Sukhov R., Khristenko I., Gushikem Y., Kholin Y. Hybrid silica-organic material with immobilized amino groups: surface probing and use for electrochemical determination of nitrite ions. J. Sol-Gel Sci. Technol. 2013. 67(1): 145. https://doi.org/10.1007/s10971-013-3060-3 

19. Dash S., Mishra S., Patel S., Mishra B.K. Organically modified silica: Synthesis and applications due to its surface interaction with organic molecules. Adv. Colloid Interface Sci. 2008. 140(2): 77. https://doi.org/10.1016/j.cis.2007.12.006 

20. Macquarrie D.J. Organically modified hexagonal mesoporous silicas. Clean synthesis of catalysts and the effect of high loading and non-catalytic second groups on catalytic activity of amine-derivatised materials. Green Chem. 1999. 1(4): 195. https://doi.org/10.1039/a904692e 

21. Tarkhanova I., Zelikman V., Gantman M. The complexes of copper with grafted ionic liquids in the environmentally important processes. Appl. Catal., A. 2014. 470(1): 81.

22. Zagorodni A.A. Ion Exchange Materials: Properties and Applications. (Amsterdam: Elsevier, 2007).

23. Pirillo S., Cornaglia L., Ferreira M.L., Rueda E.H. Removal of Fluorescein using different iron oxides as adsorbents: Effect of pH. Spectrochim. Acta, Part A. 2008. 71(2): 636. https://doi.org/10.1016/j.saa.2008.01.018 

24. Epolito W.J., Lee Y.H., Bottomley L.A., Pavlostathis S.G. Characterization of the textile anthraquinone dye Reactive Blue 4. Dyes Pigm. 2005. 67(1): 35. https://doi.org/10.1016/j.dyepig.2004.10.006 

25. Tkachenko O.S., Khristenko I.V., Mikhraliieva A.A., Panteleimonov A.V., Kholin Yu.V. The influence of surfactant nature on the structural, morphological and sorption properties of ormosils with immobilized aminogroups. Kharkov Univ. Bulletin. 2013. 1085(22(45)): 167. [in Ukrainian].

26. Panteleimonov A., Tkachenko O., Baraban A., Benvenutti E.V., Gushikem Y., Kholin Y. Probing silica-organic hybrid materials using small probes: simulation of adsorption equilibria influenced by cooperativity effects. Adsorpt. Sci. Technol. 2014. 32(4): 305. https://doi.org/10.1260/0263-6174.32.4.305 

27. Baraban A.Y., Khristenko I.V., Tkachenko O.S., Sukhov R.V., Yurchenko O.I., Kholin Yu.V. Constructing the models describing protolytic equilibria on aminoxerogel surface. Him. Fiz. Tehnol. Poverhni. 2012. 3(1): 45. [in Russian].

28. Kholin Yu.V., Zaitsev V.M., Myerniy S.A. The study of counter-ion state in adsorption layer of complexing silica with bonded aminogroups. Reports AS Ukraine. 1994. 3: 135. [in Ukrainian].

29. Kholin Yu.V., Shabaeva Yu.V. Equilibria in the grafted layer of silica chemically modified with propionic acid. Funct. Mater. 1999. 6(1): 131. [in Russian].

30. Arlot S., Celisse A. A survey of cross-validation procedures for model selection. Statist. Surv. 2010. 4: 40. https://doi.org/10.1214/09-SS054 

31. Kholin Y.V., Bugaevsky A.A., Konyaev D.S., Shabaeva Y.V. Approximation by the Pitzer's method of dependence of equilibrium constants of reactions on surface of complexing silicas on ionic strength of solutions. Ukr. Khim. Zh. 1999. 65(8): 110. [in Russian].

32. Kholin Y.V., Myerniy S.A., Shabaeva Y.V., Khristenko I.V., Samoteikin A.A., Sumskaya N.R. Chemisorption of hydrogen ions on aminosilica surfaces at different temperatures. Adsorpt. Sci. Technol. 2003. 21(1): 53. https://doi.org/10.1260/02636170360699813 

33. Pitzer K.S., Mayorga G.J. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 1973. 77(19): 2300. https://doi.org/10.1021/j100638a009 

34. Mchedlov-Petrossyan N.O., Kukhtik V.I., Bezugliy V.D. Dissociation, tautomerism and electroreduction of xanthene and sulfonephthalein dyes in N,N-dimethylformamide and other solvents. J. Phys. Org. Chem. 2003. 16(7): 380. https://doi.org/10.1002/poc.654 

35. Denofre S., Gushikem Y., de Castro S.C., Kawano Y. Stability and surface acidity of niobium oxide grafted on a silica gel surface. J. Chem. Soc., Faraday Trans. 1993. 89(7): 1057. https://doi.org/10.1039/ft9938901057 

36. Dash D., Kumar S., Mallika C., Mudali U.K. New data on activity coefficients of potassium, nitrate, and chloride ions in aqueous solutions of KNO3 and KCl by ion selective electrodes. ISRN Chem. Eng. 2012. Article ID 730154: 5.

37. Kolthoff I.M., Bhowmik S., Chantooni M.K.jr. Acid-base indicator properties of sulfonephthaleins and benzeins in acetonitrile. Proc. Natl. Acad. Sci. USA. 1966. 56(5): 1370. https://doi.org/10.1073/pnas.56.5.1370 




DOI: https://doi.org/10.15407/hftp06.04.504

Copyright (©) 2015 O. S. Tkachenko, A. A. Mikhraliieva, A. V. Panteleimonov, R. V. Sukhov, Yu. V. Kholin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.