ЕЛЕКТРОФІЗИЧНІ ВЛАСТИВОСТІ ПОЛІМЕРНИХ НАНОКОМПОЗИТИВ НА ОСНОВІ БАГАТОШАРОВИХ ВУГЛЕЦЕВИХ НАНОТРУБОК, СИНТЕЗОВАНИХ НА БАЗАЛЬТОВІЙ ЛУСЦІ

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
вулиця Генерала Наумова, 17, Київ, 03164, Україна, E-mail: dvdrusik@ukr.net

В надвисокочастотному діапазоні та на низьких частотах досліджено електрофізичні властивості полімерних композитів (ПК) на основі поліхлоретретеретилену (ПХТФЕ), наповненого багатошаровими вуглецевими нанотрубками (БВНТ), синтезованими на поверхні базальтової луски (БЛ). Концентрація БВНТ по відношенню до базальтового каталізатора становить 0,32 об’ємних часток. Показано, що значення дієсної та уявної складових комплексної діелектричної проникності в надвисокочастотному діапазоні та електропровідності на низьких частотах негативно залежать від об’ємного вмісту БВНТ в ПК. Визначено поріг переколації системи 0,32БВНТ/БЛ–ПХТФЕ, який становить 0,013 об’ємних часток.

Ключові слова: багатошарові вуглецеві нанотрубки, полімерні композити, електропровідність, діелектрична проникність

ВСТУП

Вуглецеві нанотрубки (ВНТ) в останні десятиріччі стали предметом інтенсивних досліджень завдяки своїм унікальним властивостям та перспективам застосування в різних областях нанотехнологій [1–2]. ВНТ широко використовуються в електронній, оптоелектронній, медико-біологічній, фармацевтичній, енергетичній галузях [1–7] тощо. Функціональна поверхня, розмірні ефекти, висока провідність, реакційна здатність та біосумісність, здатність до холодної емісії електронів є факторами, що визначають ВНТ як основний матеріал для створення на їх основі датчиків, приладів, новітніх армованих композитів з високою продуктивністю. Підвищений інтерес до багатофункціональних полімерних композитів, наповнених вуглецевими нанотрубками, зумовлений високими значеннями механічної пружності, електро- та теплопровідності, ефективним поглинанням і розсіюванням електромагнітного випромінювання. Відомо, що саме каталізатор відіграє визначальну роль в кінетиці утворення та росту вуглецевих наноструктур, їх морфології, властивостей та складі. Дослідники приділяють велику увагу вибору та підготуванню каталізаторів. Так, для наноелектроніки впорядковані вуглецеві нанотрубки (волокна) синтезуються на підкладці з наноструктурованим каталізатором, який нанесений за відповідної схемою, при цьому, націці, частини каталізатора осаджуються в пори відповідного матеріалу [8]. В інших випадках, коли немає потреби в високому ступені упорядкованості вуглецевих наноструктур, дисперсний каталізатор може бути нанесений безпосередньо на поверхню підкладки, розпиловуватися всередині реакційної камери або розміщуватися в тигелі [9]. Однак, підготовка і введення каталізатора залишається самостійним етапом в технології одержання вуглецевих наноструктур, що потребує подальшого вивчення. Вирішення такої задачі досягається використанням так званої базальтової луски. Відомо [10], що відновлені в атмосфері водно оксиди металів застосовуються як каталізатори росту вуглецевих нанотрубок. Базальтова луска є нетоксичною речовиною природного походження та завдяки своєму хімічному складу (SiO₂ – 51.58; Al₂O₃ – 19.55; Fe₂O₃ – 8.91; CaO – 9.04; MgO – 5.10; TiO₂ – 1.30; SO₂ – 220
0.22 %) може бути каталізатором, на поверхні якого безпосередньо утворюються вуглецеві наноструктури. Технологічний процес одержання БЛ достатньо простий та економічний. Крім того, БЛ має унікальні фізико-механічні і хімічні характеристики, виявляє стійкість в агресивних середовищах, високу адгезію до різних речовин, що в свою чергу, визначає БЛ як перспективний матеріал для одержання нових композитів [11].

Метою роботи є синтез і дослідження електрофізичних властивостей та структури полімерних композитів на основі вуглецевих нанотрубок, синтезованих на базальній лусці.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

Для синтезу багатошарових ВНТ в якості каталізатора використовували БЛ з розмірами частинок меншими за 1 мм, яку розміщували в розігрітому до 1000 К реакторі для хімічного осадження з газової фази (CVD). Джерелом вуглецю служила пропан-бутанова суміш. Впродовж перших 5 хв через реактор пропускали газову суміш водної (2 л/хв) та аргону (6 л/хв), впродовж наступних 30 хв пропускали газову суміш водної (2 л/хв), аргону (6 л/хв) та пропан-бутану (4 л/хв). Після завершення синтезу через реактор пропускали аргон (6 л/хв) протягом 5 хв, після чого синтезований матеріал ніяк з реактора та охолоджували в вакуумі (0.13 Па).

Полімерні композити на основі БВНТ/БЛ і поліліндротрифторетилену (ПХТФЕ) одержували методом пресування за температури 513 К і тиску 2 МПа. Дослідження дійсної (ε′) та уявної (ε″) складової комплексної діелектричної проникності композитів проведено в надвисокочастотному (НВЧ) діапазоні 8–12 ГГц за допомогою інтерферометра на основі вимірювача різниці фаз РФК2-18 та вимірювача коефіцієнта стоячих хвиль і послаблення Р2-60 безелектродним методом [12], а електропровідність (σ) на низьких частотах 0.1, 1 і 10 кГц [13] двохконтактним методом за допомогою вимірювача імітанса Е7-14. Частотні залежності комлексної питомої електропровідності ε* композитів визначали шляхом розрахунків спектрів імпендансу Z* = Z′ + jZ″ в діапазоні частот 10^2–10^8 Гц, одержаних на імпендаційному спектрометрі Solatron SI 1260. Похибка визначення значень ε′, ε″ та σ не перевищувала 5 %.

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Аналіз результатів електрично-мікроскопійних досліджень (підсвічувані електрона мікроскопи JEM-2100F та JEOL JEM-100CX II) одержаних вуглецевих нанотрубок, які очікувані від каталізатора (рис. 1 а, б), та на поверхні базальтової луски (рис. 1 в), свідчить про утворення багатошарових вуглецевих нанотрубок.

![Рис. 1. Електронні фотографії зразків БВНТ (a, b) і БВНТ/БЛ (в)](image)

Як відомо [14, 15], в інертній атмосфері вуглецеві нанотрубки стабільні до 3300 К, в присутності кисню повітря за підвищених температур відбувається окиснення вуглецю нанотрубок до їх повного згорання, що підтверджується даними термічного аналізу (рис. 2). Так, вище 723 К спостерігається суттєве зменшення маси зразка БВНТ/БЛ майже до повного вигорання (залишається фаза каталізатора). Така температура початку окиснення нанотрубок характерна для більшості ВНТ, синтезованих методом CVD [15].
З рис. 3 видно, що значення ε'' слабо змінюються до вмісту ВНТ 0.01 об’ємних часток. Із подальшим зростанням концентрації провідних багатошарових ВНТ відбувається різке зростання значень ε’ та ε'', що може характеризувати перколаційний перехід.

З рис. 4 видно, що основний вклад в електропровідність композитів вносять ВВНТ. Зростання електропровідності відбувається немонотонно: найбільш різка зміна значень спостерігається в вузькій області концентрацій ВНТ (0.01 < φ < 0.02), що свідчить про реалізацію перколаційного переходу [16]. А саме, при вмісті вуглецевих нанотрубок φ < 0.01 провідні частинки об’єднуються в локальні кластери, що ізольовані один від одного, внаслідок чого збільшення значень електропровідності є незначним. Із зростанням вмісту провідних частинок середній розмір кластерів збільшується, при 0.01 < φ < 0.02 значна частина ізольованих кластерів переходять в несмуговий кластер (розгалужений), який прохідить полімерний композит усіх напрямках; виникає так званий канал провідності, що приводить до зростання значень σ на кілька порядків. Подальше збільшення вмісту провідних ВНТ (φ > 0.03) приводить до росту об’єму несмугового кластеру, яке відображається на монотонному характері зростання провідності. Це пов’язано з тим, що внесок в провідність додаткових каналів в кластирах наночастинок суттєво менший від сумарної провідності каналів, які утворювалися при формуванні перколаційного кластера на порозі перколації.

Рис. 3. Залежність ε’ (а) та ε’’ (б) від об’ємного вмісту (φ) БВНТ на частоті 9 ГГц полімерних нанокомпозитів 0.32БВНТ/БЛ–ПХТФЕ від об’ємного вмісту (φ) ВНТ (Т = 298 К)

Рис. 4. Залежність логарифма електропровідності (σ) на частоті 1 кГц полімерних нанокомпозитів 0.32БВНТ/БЛ–ПХТФЕ від об’ємного вмісту (φ) ВНТ (Т = 298 К)

Проаналізувавши одержані дані з позиції теорії перколації (згідно з рівнянням $\sigma(\phi) = \sigma_o(\phi - \varphi_c)^t$, де σ_o – електропровідність наповнювача; φ – об’ємний вміст; φ_c – значення концентрації, що відповідає порогу перколації; t – критичний індекс), виявили, що значення
порогу перколації для системи 0.32ВВНТ/БЛ–ПХТФЕ становить \(\varphi_c = 0.013 \pm 0.002 \) (\(t = 3.8 \pm 0.1 \)), \(\sigma_\varepsilon = 4 \cdot 10^{-3} \text{Ом}^{-1} \text{см}^{-1} \) – теоретично розрахована електропровідність нанотрубок. Зазначимо, що для систем поліетеретилен–дисперговані ВНТ поріг перколації значно вищий і становить \(\varphi_c = 0.026 \pm 0.002 \) [17].

Рис. 5. Частотні залежності дійсної складової електропровідності (\(\sigma' \)) композитів системи 0.32ВВНТ/БЛ–ПХТФЕ. Об’ємний вміст БВНТ: 1 – 0.006; 2 – 0.013; 3 – 0.027; 4 – 0.042; 5 – 0.056

Були також проведені вимірювання імпедансу композитів 0.32ВВНТ/БЛ–ПХТФЕ за кімнатних температур в діапазоні частот \(10^3 – 10^6 \) Гц, при вмісті ВВНТ від 0.006 до 0.056 об’ємних часток. Комплексну питому електропровідність визначали відповідно до рівняння \(\sigma' = \sigma' + i\sigma'' = 1/\rho'^* \), \(\rho'^* = \rho'^* + i\rho'' = Z'^* \) (S/h), де S і h – площа та товщина зразка відповідно. Як видно з рис. 5, для полімерних зразків, що містять ВВНТ більше 0.013 об’ємних часток (після порогу перколації), величина \(\sigma' \) з частотою практично не змінюється. А для композитів, що містять багатошарові ВНТ до 0.013 (до порогу перколації), в області частот \(f > 10^5 \) Гц спостерігається зростання значень дійсної складової електропровідності (криві 1, 2). Таке зростання значень \(\sigma' \) описується в рамках моделі стрибкового механізму електропровідності згідно з рівнянням \(\sigma'_\varepsilon = \sigma'_\varepsilon(1+((\omega/\omega_c)^n)^m) \), де \(\sigma'_\varepsilon \) – провідність на змінному струмі, \(\sigma'_\varepsilon(\omega) \) – наскрізна провідність на постійному струмі, \(\omega_c \) – середня частота стрибків носіїв заряду, \(\omega = 2\pi f \) – циклічна частота, \(0 < n < 1 \). При зростанні вмісту провідної компоненти зменшуються прошарки полімера між електропровідними частинками і збільшується ймовірність тунелювання електронів.

Отже, використання синтезу багатошарових вуглецевих нанотрубок на поверхні базальтової луски може бути перспективним для створення на їх основі полімерних фарб з антистатичними властивостями, антикорозійними та екрануючими покриттями, структурних модифікаторів конструкційних матеріалів тощо.

ВИСНОВКИ

Розроблено методику синтезу багатошарових вуглецевих нанотрубок на базальтовому каталізаторі. Досліджено електропровідні властивості в НВЧ діапазоні та на низьких частотах полімерних нанокомпозитів, наповнених багатошаровими вуглецевими нанотрубками, що синтезовані на поверхні базальтової луски. Показано, що значення дійсної та уявної складових комплексної діелектричної проникності в надвисокочастотному діапазоні та електропровідності на низьких частотах непіднімно залежать від об’ємного вмісту ВВНТ в композитах 0.32ВВНТ/БЛ–ПХТФЕ, що обумовлено наявністю порогу протикання. Поріг перколації для системи 0.32ВВНТ/БЛ–ПХТФЕ становить \(\varphi_c = 0.013 \pm 0.002 \) (\(t = 3.8 \pm 0.1 \)) на частоті 1кГц.
Электрофизические свойства полимерных композитов на основе многослойных углеродных нанотрубок, синтезированных на базальтовой чешуе

Р.В. Мазуренко, С.В. Журавский, Г.М. Гуня, Г.П. Приходько, С.Н. Махно, П.П. Горбик, Н.Т. Картель

Институт химии поверхности им. А.А. Чуйка Национальной академии наук Украины ул. Генерала Наумова, 17, 03680, Киев, Украина, dvdrusik@ukr.net

Исследованы электрофизические свойства в сверхвысокочастотном диапазоне и на низких частотах полимерных композитов на основе полихлортрифторэтилена (ПХТФЭ), наполненного многослойными углеродными нанотрубками (МУНТ), синтезированных на поверхности базальтовой чешуи (БЧ). Концентрация МУНТ по отношению к базальному каталитатору составляет 0.32 объемных долей. Показано, что значения действительной и мнимой составляющей комплексной диэлектрической проницаемости в сверхвысокочастотном диапазоне и электропроводность на низких частотах нелинейно зависят от объемного содержания МУНТ в композитах. Определен порог переключения системы 0.32МУНТ/БЧ–ПХТФЭ, который составляет 0.013 объемных долей.

Ключевые слова: многослойные углеродные нанотрубки, полимерные композиты, электропроводность, диэлектрическая проницаемость

Electrophysical properties of polymer composites on the basis of multiwalled carbon nanotubes synthesized on a basalt scale

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine, dvdrusik@ukr.net

The electrophysical properties of polymer composites (PC) based on polychlorotrifluoroethylene (PCTFE) filled multiwalled carbon nanotubes (MWCNT) synthesized on the surface of basalt scale (BS) have been studied in the superfrequency range and low-frequencies. Concentration of MCNT relative to basaltic catalyst is 0.32 volume fractions. It has been shown that the values of real and imaginary parts of the complex permittivity in the superfrequency range and electrical conductivity at low frequencies depend nonlinearly on the volume content of MWCNT in composites. The percolation threshold of system 0.32MWCNT/BS–PCTFE has been defined and its value is 0.013 volume fractions.

Keywords: multiwalled carbon nanotubes, polymer composites, conductivity, dielectric permittivity

Литература
3. Gaufres E., Izard N., Roux X.Le. et al. Optical microcavity with semiconducting singlewall...

Надійшла 06.03.2014, прийнята 02.04.2014