Хімія, фізика та технологія поверхні, 2013, 4 (1), 55-61.

Мікрохвильова карбонізація гліцерину на поверхні кремнезему



DOI: https://doi.org/10.15407/hftp04.01.055

A. V. Korobeinyk, R. B. Kozakevych, Yu. M. Bolbukh, V. A. Tertykh

Анотація


Досліджено процеси термічного та мікрохвильового розкладання композитів, одержаних шляхом фіз- та хемосорбції гліцерину на поверхні кремнезему. Аеросили А300 та АМ300 були використані як субстрати для прищеплення і подальшої карбонізації гліцерину. Деструкція композитів проводилася в побутовій мікрохвильовій печі, де радіація забезпечувала необхідну температуру для карбонізації гліцерину. Встановлено, що ефективність карбонізації гліцерину залежить від ступеня гідратованості поверхні носія і типу взаємодії гліцерин – носій.

Повний текст:

PDF (English)

Посилання


1. Mueller H., Rehak P., Jaeger C., Hartmann J., Meyer N., Spange S. A concept for the fabrication of penetrating carbon/silica hybrid materials. Adv. Mater. 2000. 12(22): 1671.https://doi.org/10.1002/1521-4095(200011)12:22<1671::AID-ADMA1671>3.0.CO;2-M

2. Rodriguez-Mirasol J., Cordero T., Radovic L.R., Rodriguez J.J. Structural and textural properties of pyrolytic carbon formed within a microporous zeolite template. Chem. Mater. 1998. 10(2): 550. https://doi.org/10.1021/cm970552p

3. Han S., Lee K.T., Oh S.M., Hyeon T. The effect of silica template structure on the pore structure of mesoporous carbons. Carbon. 2003. 41(5): 1049. https://doi.org/10.1016/S0008-6223(02)00439-6

4. He Q., Ma M., Wei C., Shi J. Mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials. 2012. 33(17): 4392. https://doi.org/10.1016/j.biomaterials.2012.02.056

5. Peng H., Zhu Y., Peterson D.E., Lu Y. Nanolayered carbon/silica superstructures via organosilane assembly. Adv. Mater. 2008. 20(6): 1199. https://doi.org/10.1002/adma.200701303

6. Liu Y., Mastumura T., Ono Y., Imanishi N., Hirano A., Takeda Y. Electrochemical behavior of the composite anodes consisting of carbonaceous materials and lithium transition-metal nitrides for lithium-ion batteries. Solid State Ionics. 2008. 179(35–36): 2069. https://doi.org/10.1016/j.ssi.2008.07.007

7. Leboda R. Preparation and modification of complex pyrolytic carbon-silica adsorbents. Chromatographia. 1981. 14(9): 524. https://doi.org/10.1007/BF02265632

8. Peng P., Li X.D., Yuan G.F., She W.Q., Cao F., Yang D.M. Aluminum oxide/amorphous carbon coatings on carbon fibers, prepared by pyrolysis of an organic-inorganic hybrid precursor. Mater. Lett. 2001. 47(3): 171. https://doi.org/10.1016/S0167-577X(00)00231-7

9. Song W., Guo M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis. 2012. 94(1): 138. https://doi.org/10.1016/j.jaap.2011.11.018

10. Lu Q.-F., He Z.-W., Zhang J.-Y., Lin Q. Fabrication of nitrogen-containing hollow carbon nanospheres by pyrolysis of self-assembled poly(aniline-co-pyrrole). J. Anal. Appl. Pyrolysis. 2012. 93(1): 147. https://doi.org/10.1016/j.jaap.2011.10.009

11. Fasoli U., Genon G. Activated carbon by pyrolysis of organic sludges. Water Res. 1976. 10(6): 545. https://doi.org/10.1016/0043-1354(76)90192-5

12. Gilpin R.K., Gangoda M.E., Jaroniec M. Preparation and characterization of silica-carbon hybrids. Carbon. 1997. 35(1): 133. https://doi.org/10.1016/S0008-6223(96)00131-5

13. Kato Y., Goto M., Sato R., Yamada K., Koga A., Teii K. Formation of epitaxial 3C-SiC layers by microwave plasma-assisted carbonization. Surf. Coat. Technol. 2011. 206(5): 990. https://doi.org/10.1016/j.surfcoat.2011.04.021

14. Chen W.-H., Ye S.-C., Sheen H.-K. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour. Technol. 2012. 118: 195. https://doi.org/10.1016/j.biortech.2012.04.101

15. Liu C., Zhang P., Tian F., Li W., Li F., Liu W. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J. Mater. Chem. 2011. 21(35): 13163. https://doi.org/10.1039/c1jm12744f

16. Franca A.S., Oliveira L.S., Nunes A.A., Alves C.C.O. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents. Bioresour. Technol. 2010. 101(3): 1068. https://doi.org/10.1016/j.biortech.2009.08.102

17. Lin Q.H., Cheng H., Chen G.Y. Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. J. Anal. Appl. Pyrolysis. 2012. 93(1): 113. https://doi.org/10.1016/j.jaap.2011.10.006

18. Deng H., Li G., Yang H., Tang J., Tang J. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem. Eng. J. 2010. 163(3) 373. https://doi.org/10.1016/j.cej.2010.08.019 

19. Li W., Zhang L.-b., Peng J.-h., Li N., Zhu X.-Y. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind. Crops Prod. 2008. 27(3): 341. https://doi.org/10.1016/j.indcrop.2007.11.011

20. Nuchter M., Ondruschka B., Bonrath W., Gum A. Microwave assisted synthesis–a critical technology overview. Green Chem. 2004. 6: 128. https://doi.org/10.1039/B310502D

21. Baker S.N., Baker G.A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 2010. 49(38): 6726. https://doi.org/10.1002/anie.200906623

22. Firouzabadi H., Iranpoor N., Karimi B., Hazarkhani H. Highly efficient transdithioacetalization of acetals catalyzed by silica chloride. Synlett. 2000. 2000(2): 263. https://doi.org/10.1055/s-2000-6483

23. Staszczuk P., Jaroniec M., Gilpin R.K. Thermoanalytical studies of water films on porous silicas at subambient and elevated temperatures. Thermochim. Acta. 1996. 287(2): 225. https://doi.org/10.1016/S0040-6031(96)03016-X

24. Sykes P. Guidebook to Mechanism in Organic Chemistry. (Harlow: Prentice Hall, 1986).

25. Coll D., Delbecq F., Aray Y., Sautet P. Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles. Phys. Chem. Chem. Phys. 2011. 13(4): 1448. https://doi.org/10.1039/C0CP00858C

26. Wendlandt W.W. Thermal Methods of Analysis. (New York: John Wiley and Sons, 1986).

27. Physical properties of glycerine and its solutions. (New York: Glycerine Producers' Association, 1963).

28. Kochkodan O.D. Adsorption of organic compounds in different types of porous carbon sorbents. Naukovyy visnyk NUBiP Ukrayiny. 2010. 150: 46. [in Ukrainian].




DOI: https://doi.org/10.15407/hftp04.01.055

Copyright (©) 2013 A. V. Korobeinyk, R. B. Kozakevych, Yu. M. Bolbukh, V. A. Tertykh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.