Хімія, фізика та технологія поверхні, 2015, 6 (4), 456-465.

Штучні атоми і молекули: сучасний стан і перспективи досліджень



DOI: https://doi.org/10.15407/hftp06.04.456

S. I. Pokutnyi, P. P. Gorbyk

Анотація


Огляд присвячено розгляду сучасного стану досліджень штучних атомів (квазіатомних наногетероструктур) та більш складних наноструктур на їх основі – штучних молекул, а також перспектив розвитку вказаного наукового напряму.

Ключові слова


штучні атоми; штучні молекули; наногетероструктури; квантові точки; електрон; дірка; енергетичний спектр

Повний текст:

PDF (Русский)

Посилання


1. Ashoori R. C. Electrons in artificial atoms. Nature. 1996. 379 (6564): 413.  https://doi.org/10.1038/379413a0 

2. Pokutnyi S.I., Gorbyk P.P. The electronic properties of quasiatomic nanostructures. Progress in Physics of Metals. 2013. 14 (4): 353.

3. Pokutnyi S.I., Gorbyk P.P. Superatoms in quasi-zero-dimensional nanostructures. J. Appl. Chem. 2013. 1(1): 44.

4. Pokutnyi S.I. Exciton formed from spatially separated electrons and holes in dielectric quantum dots. J. Adv. Chem. 2015. 11(10): 3848.

5. Pokutnyi S.I. Binding energy of the exciton of a spatially separated electron and hole in quasi-zero-dimensional nanosystems. Tech. Phys. Lett. 2013. 39(3): 233.  https://doi.org/10.1134/S1063785013030139 

6. Pokutnyi S.I. On an exciton with a spatially separated electron and hole in quasi-zero-dimensional nanostructures. Semiconductors. 2013. 47(6): 791.  https://doi.org/10.1134/S1063782613060225 

7. Pokutnyi S.I. Binding energy of excitons formed from spatially separated electrons and holes in insulating quantum dots. Semiconductors. 2015. 49(10): 1311.  https://doi.org/10.1134/S1063782615100218 

8. Pokutnyi S.I. Theory of excitons and excitonic quasimolecules formed from spatially separated electrons and holes in quasi-zero-dimensional nanosytems. Optics. 2014. 3(1): 10. 

9. Landau L.D., Lifshitz E.M. Quantum mechanics. (Moscow: Nauka, 1974).

10. Malygin A.A., Smirnov V.M. Chemistry highly substances. Proc. St.- Petersburg state Technical Institute. 2012. 15(41): 102.

11. Lalumiure K., Sanders B.S., Van Loo A.F., Fedorov A., Wallraff A., Blais A. Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A. 2013. 88(10): 43806.  https://doi.org/10.1103/PhysRevA.88.043806 

12. Van Loo A.F., Fedorov A., Lalumiere K., Sanders B.C., Blais A., Wallraff A. Photon-mediated interactions between distant artificial atoms. Science. 2013. 342(6165): 1494. https://doi.org/10.1126/science.1244324 

13. Bondar N.V., Brodyn M.S. Optical properties of semiconductor nanostructures. Physics E. 2010. 4(10): 1549.  https://doi.org/10.1016/j.physe.2009.12.043 

14. Dzyuba V.P., Krasnok A.E., Kulchin J.N. Optical properties of the dielectric nanoparticles inserted into a dielectric matrix. Tech. Phys. Lett. 2010. 36(21): 1. 

15. Kulchin J.N., Dzyuba V.P. Nonoptical properties of the dielectric nanoparticles inserted into a dielectric matrix. Pac. Sci. Rev. 2010. 12(1): 102.

16. Bulavin L. Thermophysical properties of carbon nanotubes in toluene under high pressure. J. Mol. Liq. 2009. 150(7): 1.

17. Malyukin Y.V. Activation nanocrystals dielectric. Radiat. Meas. 2010. 4(3): 589.  https://doi.org/10.1016/j.radmeas.2009.12.023 

18. Latyshev A.N., Chung N.T.K., Ovchinnikov O.V., Smirnova T.I., Smirnova M.S., Egorushina E.A. Characteristic features of charge transfer in the interaction between sensitizer molecules and AgCl(I) molecules. J. Appl. Spectroscop. 2011. 78(3): 454.  https://doi.org/10.1007/s10812-011-9485-y 

19. Suvorova T.I., Latyshev A.N., Ovchinnikov O.V., Smirnov M.S. Strengthening the luminescence of dye molecules in the presence of silver nanoparticles. J. Opt. Technol. 2012. 79(1): 79.  https://doi.org/10.1364/JOT.79.000056 

20. Borysenko M.V., Bogatyrev V.M., Poddenezhny N.V., Boiko A.A., Chuiko A.A. Application of chromium-containing silica for synthesising functional glasslike materials by the sol-gel method. J. Sol-Gel Sci. Technol. 2004. 32(3): 327.  https://doi.org/10.1007/s10971-004-5811-7 

21. Borysenko M.V., Sulim I.Y., Borysenko L.I. Modification of highly dispersed silica with zirconium acetylacetonate. Theor. Exp. Chem. 2008. 44(3): 200.  https://doi.org/10.1007/s11237-008-9030-0 

22. Pokutnyi S.I. Exciton states in semiconductor quantum dots in framework of the modified effective mass method. Semiconductors. 2007. 41(11): 1323.  https://doi.org/10.1134/S1063782607110097 

23. Pokutnyi S.I. Biexcitons formed from spatially separated electrons and holes in quasi-zero-dimensional nanosystems. Semiconductors. 2013. 47(12): 1626. https://doi.org/10.1134/S1063782613120178 

24. Pokutnyi S.I., Gorbyk P.P. Quasi-zero-dimensional nanostructures: Excitonic quasimolecules. J. Appl. Chem. 2014. 2(1): 1. 

25. Pokutnyi S.I. Exciton in quasi-zero-dimensional nanostructures. Phys. Lett. A. 1995. 203(5–6): 388.  https://doi.org/10.1016/0375-9601(95)00400-W 

26. Frish S.E. Optical spectra of atoms. (Moscow: Nauka, 1963).

27. Pokutnyi S.I. Optical nanolaser on the heavy hole transition in semiconductor nanocrystals. Phys. Lett. A. 2005. 342(5): 347.  https://doi.org/10.1016/j.physleta.2005.04.070 

28. Pokutnyi S.I., Gorbyk P.P. Absorption of light in electron states in quasi-zero-dimensional nanostructures. Optics. 2013. 2(4): 47.  https://doi.org/10.11648/j.optics.20130204.11 




DOI: https://doi.org/10.15407/hftp06.04.456

Copyright (©) 2015 S. I. Pokutnyi, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.