Хімія, фізика та технологія поверхні, 2015, 6 (4), 474-480.

Визначення ступеня окиснення молібдену механохімічно обробленого MoO3



DOI: https://doi.org/10.15407/hftp06.04.474

N. S. Kopachevska, A. K. Melnyk, I. V. Bacherikova, V. A. Zazhigalov, K. Wieczorek-Ciurowa

Анотація


Ступінь окиснення оксиду молібдену MoO3 після механохімічної обробки в різних середовищах (повітря, вода, етанол) було досліджено титруванням, ЕПР та XANES спектроскопією. Було показано, що відновлення молібдену відбувається в усіх середовищах обробки, а ступінь відновлення залежить від енергетичного навантаження (швидкості обертання, тривалості) та середовища обробки. XANES спектри доводять, що відновлення MoO3 веде до утворення лише іонів Mo5+. Максимальний ступінь відновлення спостерігається при обробці в етанолі. Було показано присутність О2-, локалізованого в координаційній сфері іона Mo5+.

Ключові слова


механохімічна обробка; ступінь окиснення; MoO3; ЕПР-спектри

Повний текст:

PDF (English)

Посилання


1. Ertl G., Knözinger H., Weitkamp J. (Eds). Handbook of heterogeneous catalysis. (Wainheim: Wiley-VCH, 2008).

2. Golodets G.I. Heterogeneous catalytic reactions involving molecular oxygen. Stud. Surf. Sci. Catal. 1983. 15: 1.

3. Ertl G., Knözinger H., Weitkamp J. (Eds). Preparation of solid catalysts. (Wainheim: Wiley-VCH, 1999).

4. Zazhigalov V.A., Haber J., Stoch J., Kharlamov A.I., Bacherikova I.V., Bogutskaya L.V. Alternative methods to prepare and modify vanadium-phosphorus catalysts for selective oxidation of hydrocarbons. Stud. Surf. Sci. Catal. 1997. 110: 337.https://doi.org/10.1016/S0167-2991(97)80994-9

5. Avvakumov E., Senna M., Kosova N. Soft mechanochemical synthesis: A basis for new chemical technologies. (Boston: Kluwer AP, 2001).

6. Zazhigalov V.A., Haber J., Stoch J., Bogutskaya L.V., Bacherikova I.V. Mechanochemistry in preparation and modification of vanadium catalysts. Stud. Surf. Sci. Catal. 1996. 101 B: 1039.

7. Mestl G., Srinivasan T.K.K., Knozinger H. Mechanically activated MoO3. 1. Particle size, crystallinity and morphology. Langmuir. 1995. 11(8): 3027.https://doi.org/10.1021/la00008a030

8. Mestl G., Verbuggen N.F.D., Knozinger H. Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir. 1995. 11(8): 3035.https://doi.org/10.1021/la00008a031

9. Pluboyarov V.A., Kiselevich S.N., Kirichenko O.A., Pauli I.A., Korotaeva Z.A., Dektyarev S.P., Ancharov A.I. Effect of mechanical activation on the physicochemical properties of MoO3. Inorg. Mater. 1998. 34(11): 1365 [in Russian].

10. Zazhigalov V.A., Khalameida S.V., Litvin N.S, Bacherikova I.V., Stoch J., Depero L. Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties. Kinet. Catal. 2008. 49(5): 692.https://doi.org/10.1134/S0023158408050145

11. Bielanski A., Najbar M. V2O5-MoO3 catalysts for benzene oxidation. Appl. Catal. A. 1997. 157(1–2): 223.https://doi.org/10.1016/S0926-860X(97)00018-5

12. Haber J., Lalik E. Catalytic properties of MoO3 revisited. Catal. Today. 1997. 33(1–3): 119.https://doi.org/10.1016/S0920-5861(96)00107-1

13. Skwarek E., Khalameida S., Janusz W., Sydorchuk V., Konovalova N., Zazhigalov V., Skubiszewska-Zięba J., Leboda R. Influence of mechanochemical activation on structure and some properties of mixed vanadium-molybdenum oxides. J. Therm. Anal. Calorim. 2011. 106(3): 881.https://doi.org/10.1007/s10973-011-1744-x

14. Volta J.C., Portefaix J.L. Structure sensitivity of mild oxidation reactions on oxide catalysts – a review. Appl. Catal. 1985. 18(1): 1.https://doi.org/10.1016/S0166-9834(00)80296-1

15. Volta J.C. Structure sensitivity of MoO3 in mild oxidation of propylene. J. Catal. 1985. 93(2): 467.https://doi.org/10.1016/0021-9517(85)90194-0

16. Bogutskaya L.V., Khalameida S.V., Zazhigalov V.A., Kharlamov A.I., Lyashenko L.V., Byl' O.G. Effect of mechanochemical treatment on the structure and physicochemical properties of MoO3. Theor. Exp. Chem. 1999. 35(4): 242.https://doi.org/10.1007/BF02511524

17. Zazhigalov V.A., Khalameida S.V., Zaitsev Yu.P., Bacherikova I.V. Proc. 4th Int. Cong. Oxid. Catal. (September, 2001, Berlin/Potsdam, Germany) P. 291.

18. Valente N.G., Cadús L.E., Gorriz O.F., Arrúa L.A., Rivarola J.B. Synergy in the Sn-Mo-O catalysts: The selective oxidation of methanol. Appl. Catal. A. 1997. 153(1–2): 119.https://doi.org/10.1016/S0926-860X(96)00339-0

19. Ward M.B., Lin M.J., Lunsford J.H. The oxidative dehydrogenation of ethane by nitrous oxide over molybdenum oxide supported on silica gel. J. Catal. 1977. 50(2): 306.https://doi.org/10.1016/0021-9517(77)90040-9

20. Mestl G., Verbruggen N.F.D., Bosch E., Knözinger H. Mechanically activated MoO3. 5. Redox behaviour. Langmuir. 1996. 12(12): 2961.https://doi.org/10.1021/la950788c

21. Bielanski A., Haber J. Oxygen in catalysis. V. 43. (New York: Marcel Dekker, 1991).

22. Hodnett B.K. Influence of P/V ratio on the phase composition and catalytic activity of vanadium phosphate based catalysts. Appl. Catal. 1983. 6(2): 231.https://doi.org/10.1016/0166-9834(83)80267-X

23. Parker G.A. Analytical chemistry of molybdenum. (Berlin: Springer-Verlag, 1983). https://doi.org/10.1007/978-3-642-68992-5

24. Serwicka E. ESR evidence for structural rearrangements occurring upon MoO3 reduction. J. Solid State Chem. 1984. 51(3): 300.https://doi.org/10.1016/0022-4596(84)90346-3

25. Litvin N.S., Khalameida S.V., Zazhigalov V.O. Modification of molybdenum oxide MoO3 surface by mechanochemical treatment. Chem. Phys. Tech. Surf. 2010. 1(1): 50. [in Ukrainian].

26. Wieczorek-Ciurowa K., Litvin N., Zazhigalov V. Peculiarities of mechanochemical activation of MoO3 with respect to catalytic processing of bioethanol. Przemysł chemiczny. 2011. 90(7): 1404. [in Polish].

27. Petrakis L., Mayer P.L., Debies T.P. ESR and XPS investigation of a Mo-η-Al2O3 model catalyst system and its interaction with adsorbed aromatics. J. Phys. Chem. 1980. 84(9): 1020.https://doi.org/10.1021/j100446a018

28. Sunu S.S., Prabhu E., Jayaraman V., Gnanasekar K.I., Seshagiri T.K., Gnanasekaran T. Electrical conductivity and gas sensing properties of MoO3. Sens. Actuator. B. 2004. 101(1–2): 161.https://doi.org/10.1016/j.snb.2004.02.048

29. Sarode P.R., Ramasesha S., Madhusudan W.H., Rao C.N.R. Relation between atomic charge and chemical shifts in x-ray absorption spectra of transition metal compounds. J. Phys. C. 1979. 12(12): 2439.https://doi.org/10.1088/0022-3719/12/12/029

30. Ressler T., Timpe O., Neisius T., Find J., Mestl G., Dieterle M., Schlogl R. Time-resolved XAS investigation of the reduction/oxidation of MoO3-x. J. Catal. 2000. 191(1): 75.https://doi.org/10.1006/jcat.1999.2772

31. Aritani H., Shibasaki H., Orihara H., Nakahira A. Methane dehydroaromatization over Mo-modified H-MFI for gas to liquid catalysts. J. Environ. Sci. (China). 2009. 21(6): 736.https://doi.org/10.1016/S1001-0742(08)62333-5




DOI: https://doi.org/10.15407/hftp06.04.474

Copyright (©) 2015 N. S. Kopachevska, A. K. Melnyk, I. V. Bacherikova, V. A. Zazhigalov, K. Wieczorek-Ciurowa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.