Хімія, фізика та технологія поверхні, 2023, 14 (2), 237-248.

Анодна oксидна алюмінієва мембрана, отримана в електроліті «щавлева кислота-матеріал з вуглецевими наноточками»



DOI: https://doi.org/10.15407/hftp14.02.237

K. O. Kudelko, L. M. Rozhdestvenska, L. M. Ponomarova, V. M. Оgenko

Анотація


Анодний оксид алюмінію досліджується та застосовується як нанорозмірні структури, покриття, шаблони та ін. Пористу структуру анодного оксиду алюмінію можна описати як поверхню, що складається з численних гексагональних комірок та характеризується «комірчастою структурою». У роботі викладені результати дослідження анодування алюмінію з використанням електроліту: «щавлева кислота-матеріал з вуглецевими наноточками». Отримано мембрану анодного оксиду на алюмінієвій підкладинці; мембрану додатково прожарювали. Використання субстрату-алюмінію дозволяє закріпити кераміку анодного оксиду алюмінію в отворах. Методи: анодування проводили в 0.3 М щавлевій кислоті з додаванням колоїдної системи вуглецевих наноточок та без них, температури процесів контролювалася на рівні 10 °C, використовували алюмінієву фольгу (анод) та платинову пластину (катод); товщина алюмінієвої фольги 0.1 мкм; морфологію та структуру поверхні анодного оксиду алюмінію визначали за допомогою скануючого електронного мікроскопа; кут змочування між поверхнею анодної оксидної-мембрани та деіонізованою водою вимірювали за допомогою методики «краплі». Вміст кальцію контролювали кондуктометром. Концентрацію білків визначали спектрофотометрично (метод Лоурі). Встановлено, що кут змочування для деіонізованої води у точці дотику з поверхнею анодного оксиду алюмінію отриманого в електроліті «щавлева кислота-матеріал з вуглецевими наноточками» становить 38°. Додавання до кислого електроліту вуглецевих наноточок  діє як гідрофілізатор, змінює розмір пористої поверхні: в результаті можливо контролювати пористість плівок. Прожарювання мембрани анодного оксиду алюмінію при 500 °C приводить до розширення пор і стоншення їхніх стінок.

Мембрану анодного оксиду алюмінію застосовано для діалізу молочної сироватки. Мембрана, отримана в електроліті «щавлева кислота-матеріал з вуглецевими наноточками», показала більшу ступінь відбиття білкових частинок в порівнянні з аналогічною мембраною, отриманою в електроліті щавлева кислота. Перевагою використання вуглецевих наноточок в електроліті є простота й екологічність синтезу. Підхід, який передбачає додавання колоїдної системи з вуглецевим матеріалом, дозволяє не використовувати сильнокислого електроліту для отримання мембран з порами меншого розміру. Одним із варіантів застосування отриманої анодної оксидної алюмінієвої-мембрани є діаліз біологічних рідин, наприклад, молочної сироватки.


Ключові слова


анодований оксид алюмінію; вуглецеві наноточки; щавлева кислота; колоїдна система; електрохімічний синтез; діаліз

Повний текст:

PDF (English)

Посилання


Hull T.R., Witkowski A., Hollingbery L. Fire retardant action of mineral fillers. Polym. Degrad. Stab. 2011. 96(8): 1462. https://doi.org/10.1016/j.polymdegradstab.2011.05.006

Patent US 4415412. Vandegrift G.F., Horwitz P., Krumpelt M. Production of anhydrous aluminum chloride composition and process for electrolysis thereof. 1983.

Mohamed R.M., Ismail A.A., Kini G., Ibrahim I.A., Koopman B. Synthesis of highly ordered cubic zeolite A and its ion-exchange behavior. Colloids Surf., A. 2009. 348(1-3): 87. https://doi.org/10.1016/j.colsurfa.2009.06.038

Das B.R., Dash B., Tripathy B.C., Bhattacharya I.N., Das S.C. Production of η-alumina from waste aluminium dross. Miner. Eng. 2007. 20(3): 252. https://doi.org/10.1016/j.mineng.2006.09.002

Hsieh S.-M., Liu M.-Ch., Chen Y.-H., Lee W.-S., Hwang Sh.-J., Cheng Sh.-H., Ko W.-Ch., Hwang K.-P., Wang N.-Ch., Lee Yu-L., Lin Yi-L., Shih Sh.-Ru, Huang Ch.-G., Liao Ch.-Che, Liang J.-J., Chang Ch.-Sh., Chen Ch., Lien Ch. En, Tai I-Ch., Lin T.-Y. Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir. Med. 2021. 9(12):1396. https://doi.org/10.1016/S2213-2600(21)00402-1

Fleagle Chisholm C., Jin Kang T., Dong M., Lewis K., Namekar M., Lehrer A.T., Randolph T.W. Thermostable ebola virus vaccine formulations lyophilized in the presence of aluminum hydroxide. Eur. J. Pharm. Biopharm. 2019. 136: 213. https://doi.org/10.1016/j.ejpb.2019.01.019

Zotov R., Meshcheryakov E., Livanova A., Minakova T., Magaev O., Isupova L., Kurzina I. Influence of the composition, structure, and physical and chemical properties of aluminium-oxide-based sorbents on water adsorption ability. Materials. 2018. 11(1): 132. https://doi.org/10.3390/ma11010132

Danilevich V.V., Isupova L.A., Kagyrmanova A.P., Kharina I.V., Zyuzin D.A., Noskov A.S. Highly effective water adsorbents based on aluminum oxide. Kinet. Catal. 2012. 53(5): 632. https://doi.org/10.1134/S0023158412050059

Islam M.A., Morton D.W., Johnson B.B., Pramanik B.K., Mainali B., Angove M.J. Metal ion and contaminant sorption onto aluminium oxide-based materials: a review and future research. J. Environ. Chem. Eng. 2018. 6(6): 6853. https://doi.org/10.1016/j.jece.2018.10.045

Mal'tseva T.V., Kudelko E.O., Belyakov V.N. Adsorption of Cu(II), Cd(II), Pb(II), Cr(VI) by double hydroxides on the basis of Al oxide and Zr, Sn, and Ti oxides. Russ. J. Phys. Chem. A. 2009. 83(13): 2336. https://doi.org/10.1134/S0036024409130263

Mal'tseva, T.V., Yatsenko, T.V., Kudelko, E.O., Belyakov V.N. The effect of introduction of manganese hydroxide and hydrated aluminum oxide on the pore structure and surface charge of Zr(IV), Ti(IV), and Sn(IV) oxyhydrates. Russ. J. Appl. Chem. 2011. 84: 756. https://doi.org/10.1134/S107042721105003X

Mal'tseva T.V., Pal'chik A.V., Kudelko E.O., Vasilyuk S.L., Kazdobin K.A. Impact of surface properties of hydrated compounds based on ZrO2 on the value of ionic conduction. J. Water Chem. Technol. 2015. 37(1): 18.https://doi.org/10.3103/S1063455X15010051

Dzyazko Y.S., Rozhdestvenska L.M., Palchik A.V. Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers. Sep. Purif. Technol. 2005. 45(2): 141. https://doi.org/10.1016/j.seppur.2005.03.005

Pal'chik A.V., Dzyazko Yu.S., Rozhdestvenskaya L.M. Recovery of nickel ions from dilute solutions by electrodialysis combined with ion exchange. Russ. J. Appl. Chem. 2005. 75(3): 414. https://doi.org/10.1007/s11167-005-0307-y

Wu Y., Chen J., Liu Zh., Nab P., Zhang Zh. Removal of trace radioactive Cs+ by zirconium titanium phosphate: From bench-scale to pilot-scale. J. Environ. Chem. Eng. 2022. 10(4): 108073. https://doi.org/10.1016/j.jece.2022.108073

Amphlett B. Inorganic Ion Exchangers. (New York: Elsevier, 1964).

Wang X.-M., Li X.-Y., Shih, K. In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes. J. Memb. Sci. 2011. 368(1-2): 134. https://doi.org/10.1016/j.memsci.2010.11.038

Saleh T.A., Gupta V.K. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 2012. 89: 245. https://doi.org/10.1016/j.seppur.2012.01.039

Branchi M., Sgambetterra M., Pettiti I., Panero S., Navarra M.A. Functionalized Al2O3 particles as additives in proton-conducting polymer electrolyte membranes for fuel cell applications. Int. J. Hydrogen Energy. 2015. 40(42): 14757. https://doi.org/10.1016/j.ijhydene.2015.07.030

Yang C.-C., Chiu S.-J., Chien W.-C., Chiu S.-S. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J. Power Sources. 2010. 195(8): 2212. https://doi.org/10.1016/j.jpowsour.2009.10.091

Myronchuk V., Zmievskii Yu., Dzyazko Yu., Rozhdestvenska L., Zakharov V. Whey desalination using polymer and inorganic membranes: Operation conditions. Acta Periodica Technologica. 2018. 49: 103. https://doi.org/10.2298/APT1849103M

Dzyazko Yu., Rozhdestveskaya L., Zmievskii Yu., Volfkovich Yu., Sosenkin V., Nikolskaya N., Vasilyuk S., Myronchuk V., Belyakov V. Heterogeneous membranes modified with nanoparticles of inorganic ion-exchangers for whey demineralization. Materials Today: Proceedings. 2015. 2(6): 3864. https://doi.org/10.1016/j.matpr.2015.08.003

Myronchuk V.G., Dzyazko Yu.S., Zmievskii Yu.G., Ukrainets A.I. Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica. 2016. 47: 153. https://doi.org/10.2298/APT1647153M

Dzyazko Y.S., Rozhdestvenska L.M., Vasilyuk S.L., Kudelko K.O., Belyakov V.N. Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res. Lett. 2017. 12(1): 1. https://doi.org/10.1186/s11671-017-2208-4

Liu S., Tian J., Zhang W. Fabrication and application of nanoporous anodic aluminum oxide: a review. Nanotechnology. 2021. 32(22): 222001. https://doi.org/10.1088/1361-6528/abe25f

Poinern G.E.J., Ali N., Fawcett D. Progress in nano-engineered anodic aluminum oxide membrane development. Materials (Basel). 2011. 4(3): 487. https://doi.org/10.3390/ma4030487

Lee W., Park S.-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014. 114(15): 7487. https://doi.org/10.1021/cr500002z

Xia Z., Riester L., Sheldon B.W., Curtin W.A., Liang J., Yin A., Xu J.M. Mechanical properties of highly ordered nanoporous anodic alumina membranes. Rev. Adv. Mater. Sci. 2004. 6(2): 131.

Platschek B., Keilbach A., Bein T. Mesoporous structures confined in anodic alumina membranes. Adv. Mater. 2011. 23(21): 2395. https://doi.org/10.1002/adma.201002828

Yuan J.H., He F.Y., Sun D.C., Xia X.H. A Simple method for preparation of through-hole porous anodic alumina membrane. chemistry of materials. Chem. Mater. 2004. 16(10): 1841. https://doi.org/10.1021/cm049971u

Yuan J.H., Chen W., Hui R.J., Hu Y.L., Xia X.H. Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes. Electrochim. Acta. 2006. 51(22): 4589. https://doi.org/10.1016/j.electacta.2005.12.044

Mardilovich P.P., Govyadinov A.N., Mukhurov N.I., Rzhevskii A.M., Paterson R. New and modified anodic alumina membranes Part I. Thermotreatment of anodic alumina membranes. J. Membr. Sci. 1995. 98(1-2): 131. https://doi.org/10.1016/0376-7388(94)00184-Z

Patel Y., Palevičius A., Naginevičius V., Liaudanskaite J., Janušas G. Aluminum oxide membrane as a functional element for filtering bioparticles in micro hydraulic devices. In: Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XX. Proc. SPIE11270. 2020. P. 1127004. https://doi.org/10.1117/12.2541640

Osmanbeyoglu H., Hurb Tae Bong, Kim Hong Koo. Thin alumina nanoporous membranes for similar size biomolecule separation. J. Membr. Sci. 2009. 343: 1. https://doi.org/10.1016/j.memsci.2009.07.027

Attaluri A.C., Huang Z., Belwalkar A., Geertruyden W.V., Gao D., Misiolek W. Evaluation of nano-porous alumina membranes for hemodialysis application. ASAIO J. 2009. 55(3): 217. https://doi.org/10.1097/MAT.0b013e3181949924

Sharma A. Ph.D (Chem.) Thesis. (London, 2018).

Joung C.-K., Kim H.-N., Lim M.-C., Jeon T.-J., Kim H.-Y., Kim Y.-R. A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens. Bioelectron. 2013. 44: 10. https://doi.org/10.1016/j.bios.2013.01.024

Su T., He L., Mo R., Zhou C., Wang Z., Wan Y., Li C. A non-enzymatic uric acid sensor utilizing ion channels in the barrier layer of a porous anodic alumina membrane. Electrochem. Commun. 2018. 96: 113. https://doi.org/10.1016/j.elecom.2018.10.017

Vandekerkhove A., Negahdar L., Glas D. Synthesis and characterization of Ru-loaded anodized aluminum oxide for hydrogenation catalysis. ChemistryOpen. 2019. 8(4): 532. https://doi.org/10.1002/open.201900091

Liu C., Gillette EI., Chen X., Pearse A.J., Kozen A.C., Schroeder M.A., Gregorczyk K.E., Lee S.B., Rubloff G.W. An all-in-one nanopore battery array. Nat. Nanotechnol. 2014. 9: 1031. https://doi.org/10.1038/nnano.2014.247

Ahn Y., Park J., Shin D., Cho S., Park S.Y., Kim H., Kim Y.S. Enhanced electrochemical capabilities of lithium ion batteries by structurally ideal AAO separator. J. Mater. Chem. A. 2015. 3(20): 10715. https://doi.org/10.1039/C5TA01892G

Shi W., Shena Y., Gea D., Xue M., Cao H., Huanga S., Wangc J., Zhangc G., Zhangc F. Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation. J. Membr. Sci. 2008. 325(2): 801. https://doi.org/10.1016/j.memsci.2008.09.003

Hou P., Liu C., Shi C., Cheng, H. Carbon nanotubes prepared by anodic aluminum oxide template method. Chin. Sci. Bull. 2011. 57(2-3): 187. https://doi.org/10.1007/s11434-011-4892-2

Sui Y., Cui B., Guardián R., Acosta D., Martı́nez L., Perez R. Growth of carbon nanotubes and nanofibres in porous anodic alumina film. Carbon. 2002. 40(7): 1011. https://doi.org/10.1016/S0008-6223(01)00230-5

Yang S.M., Chen K.H., Yang Y.F. Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane. Synthetic Metals. 2005. 152(1-3): 65. https://doi.org/10.1016/j.synthmet.2005.07.142

Wang D., Zhang L., Lee W., Knez M., Liu L. Novel three‐dimensional nanoporous alumina as a template for hierarchical TiO2 nanotube arrays. Small. 2013. 9(7): 1025. https://doi.org/10.1002/smll.201201784

Rozhdestvenka L.M., Kudelko K.O., Ogenko V.M., Menglei Ch. Membrane materials based on porous anodic aluminium oxide Ukr. Chem. J. 2020. 86(12): 67. https://doi.org/10.33609/2708-129X.86.12.2020.67-102

Kudelko K., Rozhdestvenskaya L., Ogenko V., Chmilenko V. Formation and characterisation of porous anodized aluminum oxide, synthesized electrochemically in the presence of graphene oxide. Appl. Nanosci. 2022. 12: 1967. https://doi.org/10.1007/s13204-022-02457-y

Li Z., Fan G., Tan Z., Guo Q., Xiong D., Su Y., Zhang D. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnol. 2014. 25(32): 325601. https://doi.org/10.1088/0957-4484/25/32/325601

Ding R., Li W., Wang X., Gui T., Li B., Han P., Song L. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloys Compd. 2018. 764: 1039. https://doi.org/10.1016/j.jallcom.2018.06.133

Ivaništšev V., Fedorov M.V., Lynden-Bell R.M. Screening of Ion-Graphene Electrode Interactions by Ionic Liquids: The Effects of Liquid Structure. J. Phys. Chem. C. 2014. 118(11): 5841. https://doi.org/10.1021/jp4120783

Kong N., Liu J., Kong Q., Wang R., Barrow C.J., Yang W. Graphene modified gold electrode via π-π stacking interaction for analysis of Cu2+ and Pb2+. Sens. Actuators, B. 2013. 178: 426. https://doi.org/10.1016/j.snb.2013.01.009

Yang Y., Asiri A.M., Tang Z., Du D., Lin Y. Graphene based materials for biomedical applications. Mater. Today. 2013. 16(10): 365. https://doi.org/10.1016/j.mattod.2013.09.004

Perlova O.V., Ivanova I.S., Dzyazko Y.S., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya. Sorption of U(VI) compounds on inorganic composites containing partially unzipped multiwalled carbon nanotubes. Him. Fiz. Tehnol. Poverhni. 2021. 12(1): 18. https://doi.org/10.15407/hftp12.01.018

Perlova O.V., Dzyazko Yu. S., Palchik A.V., Ivanova I.S., Perlova N.O., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya., Dzyazko A.G. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. J. Appl. Nanosci. 2020. 10: 4591. https://doi.org/10.1007/s13204-020-01313-1

Luo X., Wang C., Wang L., Deng F., Luo S., Tu X., Au C. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem. Eng. J. 2013. 220: 98. https://doi.org/10.1016/j.cej.2013.01.017

Rozhdestvenska L., Kudelko K., Ogenko V., Palchik O., Plisko T., Bildyukevich A, Zakharov V., Zmievskii Y., Vishnevskii O. Filtration membranes containing nanoparticles of hydrated zirconium oxide-graphene oxide. In: Springer Proceedings in Physics: Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications. 2020. 246: 757. https://doi.org/10.1007/978-3-030-51905-6_51

Wang X., Zhao Y., Tian E., Li J., Ren Y. Graphene oxide-based polymeric membranes for water treatment. Adv. Mater. Interfaces. 2018. 5(15): 1701427. https://doi.org/10.1002/admi.201701427

Ng L.Y., Chua H.S., Ng C.Y. Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. J. Environ. Chem. Eng. 2021. 9(5): 105994. https://doi.org/10.1016/j.jece.2021.105994

Ogenko V., Orysyk S., Kharkova L., Yanko O., Chen D. Synthesis and spectral characteristics of Cu(II), Ni(II) and Fe(III) nanosized com­plexes on the surface of carbon quantum dot. Ukr. Chem. J. 2021. 87(9): 3. https://doi.org/10.33609/2708-129X.87.09.2021.3-13

Sulka G.D. Highly ordered anodic porous alumina formation by self‐organized anodizing. (WILEY-VCH, 2008).

Goa J. A micro biuret method for protein d determination of total protein in cerebrospinal fluid. Scand. J. Clin. Lab. Invest. 1953. 5(3): 218. https://doi.org/10.3109/00365515309094189

Dzyazko Yu., Ogenko V. Polysaccharides: An efficient tool for fabrication of carbon nanomaterials. in: polysaccharides: properties and applications. (Wiley-Scrinever, Hoboken, Beverly, 2021). P. 337. https://doi.org/10.1002/9781119711414.ch16

Nielsch K., Choi J., Schwirn K., Wehrspohn R.B., Gösele U. Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett. 2002. 2(7): 677. https://doi.org/10.1021/nl025537k

Barathi M., Krishna Kumar A.S., Kumar C.U., Rajesh N. Graphene oxide-aluminium oxyhydroxide interaction and its application for the effective adsorption of fluoride. RSC Adv. 2014. 4(96): 53711. https://doi.org/10.1039/C4RA10006A

Che Y., Sun Z., Zhan R., Wang S., Zhou S., Huang J. Effects of graphene oxide sheets-zirconia spheres nanohybrids on mechanical, thermal and tribological performances of epoxy composites. Ceram. Int. 2018. 44(15): 18067. https://doi.org/10.1016/j.ceramint.2018.07.010

Bogoyavlensky A.F. The mechanism of formation of anodic oxide film on aluminum. (Moscow: Mashinostroenie, 1964). [in Russian].

Garsia-Vergara S.J., Skeldon P., Thompson G.E., Habazaki H. Formation of porous anodic alumina in alkaline borate electrolyte. Thin Solid Films. 2007. 515(3): 5418. https://doi.org/10.1016/j.tsf.2007.01.013

Lee W., Ji R., Gösele U., Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006. 5: 741. https://doi.org/10.1038/nmat1717

Dzyazko Yu.S., Rozhdestvenskaya L.M., Vasilyuk S.L., Belyakov V.N., Kabay N., Yuksel M., Arar O., Yuksel U. Electro-deionization of Cr (VI)-containing solution. Part I: chromium transport through granulated inorganic ion-exchanger. Chem. Eng. Commun. 2008. 196(1-2): 3. https://doi.org/10.1080/00986440802303681




DOI: https://doi.org/10.15407/hftp14.02.237

Copyright (©) 2023 K. O. Kudelko, L. M. Rozhdestvenska, L. M. Ponomarova, V. M. Оgenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.