Chemistry, Physics and Technology of Surface, 2022, 13 (1), 70-81.

How the electrochemical impedance spectroscopy can deepen the understanding of supercapacitor performance



DOI: https://doi.org/10.15407/hftp13.01.070

S. O. Zelinskyi, N. G. Stryzhakova, O. V. Gozhenko, Y. A. Maletin

Abstract


Electrochemical impedance spectroscopy has been used for the characterization of electric double layer capacitors also known as supercapacitors. Specific surface area and pore size distribution for supercapacitor electrode materials and the results of impedance spectroscopy measurements for two types of commercially available nanoporous activated carbons and two graphene-type materials have been studied and compared with the results obtained from cyclic voltammetry and galvanostatic charge-discharge cycling the supercapacitor prototypes in different voltage ranges and at different current densities. It has been found that the results for the characteristics of studied supercapacitor prototypes differ insignificantly if they were obtained by different methods, while all three research methods have shown the advantage of materials with nanoporous activated carbon over materials of the graphene type. Besides, according to the data obtained by measuring impedance at low frequencies the deviations from ideal capacitive behaviour are more significant in case of graphene-type materials. Comparison of the three research methods used in this work shows that the method of impedance spectroscopy makes it possible to obtain the most complete and reliable information on the performance characteristics of the supercapacitor system, since not only the capacitance and resistance values, but their frequency dependence, as well as deviations (in degrees) from the purely capacitive vertical line at Nyquist plots and capacitance dissipation can be determined and taken into consideration.


Keywords


supercapacitors; electrochemical impedance spectroscopy; complex capacitance; cyclic voltammetry; galvanostatic cycling

Full Text:

PDF

References


Conway B.E. Electrochemical Supercapacitors. (New York: Kluwer Academic Publishers/Plenum Press., 1999).

Kötz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta. 2000. 45(15-16): 2483. https://doi.org/10.1016/S0013-4686(00)00354-6

Wang Y., Song Y., Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016. 45: 5925. https://doi.org/10.1039/C5CS00580A

Stoller M.D., Ruoff R.S. Best practice methods for determining an electrode material's performance for ultracapacitors. Energy Environ. Sci. 2010. 3: 1294. https://doi.org/10.1039/c0ee00074d

Allagui A., Freeborn T.J., Elwakil A.S., Maundy B.J. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry. Sci. Rep. 2016. 6: 38568. https://doi.org/10.1038/srep38568

International Standard IEC 62576 Electric double-layer capacitors for use in hybrid electric vehicles - Test methods for electrical characteristics.

Grigorchak I.I., Ponedilok G.V. Impedance Spectroscopy: Textbook. (Lviv: Publishing House of Lviv Polytechnic, 2011). [in Ukrainian].

Negroiu R., Svasta P., Pirvu C., Vasile A.I., Marghescu C. Electrochemical impedance spectroscopy for different types of supercapacitors. 40th International Spring Seminar on Electronics Technology (ISSE), (Aug.8, 2017, Sofia, Bulgaria) P. 1. https://doi.org/10.1109/ISSE.2017.8000889

Kampouris D.K., Randviir X.Ji, E.P., Banks C. E. A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage. RSC Adv. 2015. 5: 12782. https://doi.org/10.1039/C4RA17132B

Itagaki M., Suzuki S., Shitanda I., Watanabe K. Electrochemical Impedance and Complex Capacitance to Interpret Electrochemical Capacitor. Electrochemistry. 2007. 75(8): 649. https://doi.org/10.5796/electrochemistry.75.649

Kötz R., Hahn M., Gallay R. Temperature behavior and impedance fundamentals of supercapacitors. Journal of Power Sources. 2006. 154(2): 550. https://doi.org/10.1016/j.jpowsour.2005.10.048

Bohlen O., Kowal J., Sauer D.-U. Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model. Journal of Power Sources. 2007 172(1): 468. https://doi.org/10.1016/j.jpowsour.2007.07.021

Sopčić S., Antonić D., Mandić Z., Kvastek K., Horvat-Radosević V. Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells. J. Electrochem. Sci. Eng. 2018. 8(2): 183. https://doi.org/10.5599/jese.536

Fletcher S., Jane Black V., Kirkpatrick I. A universal equivalent circuit for carbon-based supercapacitor. J. Solid State Electrochem. 2014. 18: 1377. https://doi.org/10.1007/s10008-013-2328-4

Allagui A., Elwakil A.S., Maundy B.J., Freeborn T.J. Spectral capacitance of series and parallel combinations of supercapacitors. ChemElectroChem. 2016. 3: 1429. https://doi.org/10.1002/celc.201600249

Rosli F.A., Ahmad H., Jumbri K., Abdullah A.H., Kamaruzaman S., Abdullah N.A.F. Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. R. Soc. Open Sci. 2021. 8(1): 201076. https://doi.org/10.1098/rsos.201076

Patent. UA 90448C2. Maletin Y.A., Shembel O.M., Novak P.V., Pidmogilnyi S.M., Stryzhakova N.G., Izotov V.Y., Mironova A.A., Danylin V.V. Method for manufacturing electrodes with a low contact resistance for batteries and capacitors with a double electric layer. 2010. [in Ukrainian].

Arulepp M., Permann L., Leis J., Perkson A., Rumma K., Jänes A., Lust E. Influence of the solvent properties on the characteristics of a double layer capacitor. Journal of Power Sources. 2004. 133(2): 320. https://doi.org/10.1016/j.jpowsour.2004.03.026

Lekakou C., Moudam O., Markoulidis F., Andrews T., Watts J.F., Reed G.T. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors. J. Nanotechnology. 2011. ID 409382. https://doi.org/10.1155/2011/409382

Freeborn T.J., Maundy B., Elwakil A.S. Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renewable Sustainable Energy. 2015. 4: 9. https://doi.org/10.1007/s40243-015-0052-y

Fouda M., Elwakil A., Radwan A., Allagui A. Power and energy analysis of fractional-order electrical energy storage devices. Energy. 2016. 111: 785. https://doi.org/10.1016/j.energy.2016.05.104

Halsey T.C. Frequency dependence of the double-layer impedance at a rough surface. Phys. Rev. A. 1987. 35: 3512. https://doi.org/10.1103/PhysRevA.35.3512

R. de Levie. On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochimica Acta. 1963. 8(10): 751. https://doi.org/10.1016/0013-4686(63)80042-0

Lewandowski A., Olejniczak A., Galiński M., Stępniak I. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power Sources. 2010. 195(17): 5814. https://doi.org/10.1016/j.jpowsour.2010.03.082

Karden E., Buller S., De Doncker R.W. A frequency-domain approach to dynamical modeling of electrochemical power sources. Electrochimica Acta. 2002. 47(13-14): 2347. https://doi.org/10.1016/S0013-4686(02)00091-9

Kurzweil P. Impedance Spectroscopy - A Powerful Tool For The Characterization Of Materials And Electrochemical Power Sources. Proc. 14th International seminar on double-layer capacitors. (Dec. 6-8, 2004 Deerfield Beach, Fl. USA.). P. 1.




DOI: https://doi.org/10.15407/hftp13.01.070

Copyright (©) 2022 S. O. Zelinskyi, N. G. Stryzhakova, O. V. Gozhenko, Y. A. Maletin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.