Photocatalysis and optical properties of ZnO nanostructures grown by MOCVD on Si, Au/Si and Ag/Si wafers
DOI: https://doi.org/10.15407/hftp14.01.083
Abstract
Zinc oxide nanostructures (NS) were grown on thin discontinuous films of noble metals of silver and gold in order to study their structure, optical properties as well as photocatalytic and antiviral activity. The paper presents the results of X-ray diffraction study, scanning electron microscopy study, photoluminescence and Raman measurements. X-ray diffraction experiments demonstrate similar patterns for all grown ZnO nanostructures. The SEM images of ZnO NS grown on Ag/Si and Au/Si wafers demonstrate more dense surface microstructure compared to ZnO NS grown on bare Si wafers. The most intensive ultraviolet and deep level emissions are observed for ZnO NS grown on Ag/Si wafers. Increase in thicknesses of Ag island film from 5 nm to 10 nm gives significant increase in intensity of ultraviolet and deep level emissions. Photocatalysis of grown ZnO nanostructures was studied by methyl orange dye degradation. Superior photocatalytic results are demonstrated by ZnO nanostructures grown on Ag/Si wafers, for which constants of dye degradation were twice higher than for ZnO nanostructures grown on Si and Au/Si substrates. The photocatalytic results correlates with photoluminescence spectra: more intensive photoluminescence in ultraviolet and visible ranges of optical spectrum leads to better photocatalytic performance. The cytotoxic effect of ZnO nanostructures was studied without photoactivation by the help of cell cultures MDCK and Hep-2 while the virucidal effect of ZnO nanostructures was studied by the help of Influenza A virus (H1N1) (strain FM / 1/47) and human adenovirus serotype 2 (HAdV2). ZnO nanostructures in a 1:10 dilution were not toxic to Hep-2 and MDCK cells. Most of the tested ZnO nanostructures exhibited no virucidal activity against human adenovirus serotype 2 (HAdV2) and influenza A virus (H1N1) (strain FM / 1/47) in the absence of photoexcitation.
Keywords
References
Baibara O.E., Radchenko M.V., Karpyna V.A., Ievtushenko A.I. A review of the some aspects for the development of ZnO based photocatalysts for a variety of applications. Phys. Chem. Solid State. 2021. 22(3): 585. https://doi.org/10.15330/pcss.22.3.585-594
Qi K., Cheng B., Yu J., Ho W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 2017. 727: 792. https://doi.org/10.1016/j.jallcom.2017.08.142
Wang D., Pillai S.C., Ho S.-H., Zeng J., Li Y., Dionysiou D.D. Plasmonic-based nanomaterials for environmental remediation. Appl. Catal. B. 2018. 237: 721. https://doi.org/10.1016/j.apcatb.2018.05.094
Xie W., Li Y., Sun W., Huang J., Xie H., Zhao X. Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J. Photochem. Photobiol. A. 2010. 216(2-3): 149. https://doi.org/10.1016/j.jphotochem.2010.06.032
Bouzid H., Faisal M., Harraz F.A., Al-Sayari S.A., Ismail A.A. Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity. Catal. Today. 2015. 252: 20. https://doi.org/10.1016/j.cattod.2014.10.011
Zhang C., Li Y., Shuai D., Shen Y., Wang D. Progress and challenges in photocatalytic disinfection of waterborneViruses: A review to fill current knowledge gaps. Chem. Eng. J. 2019. 355: 399. https://doi.org/10.1016/j.cej.2018.08.158
Liao C., Jin Y., Li Y., Tjong S.C. Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Photocatalytic Toxicity. Int. J. Mol. Sci. 2020. 21(17): 6305. https://doi.org/10.3390/ijms21176305
Ievtushenko A., Karpyna V., Eriksson J., Tsiaoussis I., Shtepliuk I., Lashkarev G., Yakimova R., Khranovskyy V. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures. Superlattices Microstruct. 2018. 117: 121. https://doi.org/10.1016/j.spmi.2018.03.029
Romanyuk V.R., Kondratenko O.S., Kondratenko S.V., Kotko A.V., Dmitruk N.L. Transformation of thin gold films morphology and tuning of surface plasmon resonance by post-growth thermal processing. Eur. Phys. J. Appl. Phys. 2011. 56(1): 10302. https://doi.org/10.1051/epjap/2011110135
Ahmad M., Ahmed E., Zhang Y., Khalid N.R., Xu J., Ullah M., Hong Z. Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 2013. 13(4): 697. https://doi.org/10.1016/j.cap.2012.11.008
European Collection of Animal Cell Cultures Catalog. Porton Down: Salisbury (UK) PHLS Centre of Applied Microbiology and Research, 1990.
He Y.T., Wan J., Tokunaga T. Kinetic stability of hematite nanoparticles: the effect of particle sizes. J. Nanopart. Res. 2008. 10: 321. https://doi.org/10.1007/s11051-007-9255-1
Kohn L.K., Foglio M.A., Rodrigues R.A., Sousa I.M., Martini M.C., Padilla M.A. In-Vitro Antiviral Activities of Extracts of Plants of The Brazilian Cerrado against the Avian Metapneumovirus (aMPV). Rev. Bras. Cienc. Avic. 2015. 17(3): 275. https://doi.org/10.1590/1516-635X1703275-280
Zhang Y., Lin B., Sun X., Fu Z. Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol-gel process. Appl. Phys. Lett. 2005. 86(13): 131910. https://doi.org/10.1063/1.1891288
Galdámez-Martinez A., Santana G., Güell F., Martínez-Alanis P.R., Dutt A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials. 2020. 10(5): 857. https://doi.org/10.3390/nano10050857
Karpyna V., Ievtushenko A., Kolomys O., Lytvyn O., Strelchuk V., Tkach V., Starik S., Baturin V., Karpenko O. Raman and Photoluminescence Study of Al,N-Codoped ZnO Films Deposited at Oxygen-Rich Conditions by Magnetron Sputtering. Phys. Status Solidi B. 2020. 257(6): 1900788. https://doi.org/10.1002/pssb.201900788
Ko Y.H., Yu J.S. Silver nanoparticle decorated ZnO nanorod arrays on AZO films for light absorption enhancement. Phys. Status Solidi A. 2012. 209(2): 297. https://doi.org/10.1002/pssa.201127480
Singh T., Pandya D.K., Singh R. Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles. Thin Solid Films. 2012. 520(14): 4646. https://doi.org/10.1016/j.tsf.2011.11.074
Cheng P., Li D., Yuan Z., Chen P., Yang D. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Appl. Phys. Lett. 2008. 92(4): 041119. https://doi.org/10.1063/1.2839404
Damen T.C., Porto S.P.S., Tell B. Raman Effect in Zinc Oxide. Phys. Rev. 1966. 142(2): 570. https://doi.org/10.1103/PhysRev.142.570
Sharma S.K., Exarhos G.J. Raman Spectroscopic Investigation of ZnO and Doped ZnO Films, Nanoparticles and Bulk Material at Ambient and High Pressures. Solid State Phenomena. 1997. 55: 2. https://doi.org/10.4028/www.scientific.net/SSP.55.32
Strelchuk V.V., Kolomys O.F., Golichenko B.O., Boyko M.I., Kaganovich E.B., Krishchenko I.M., Kravchenko S.O., Lytvyn O.S., Manoilov E.G., Nasieka Iu.M. Semicond. Phys. Quantum Electron. Optoelectron. 2015. 18(1): 46. https://doi.org/10.1155/2015/203515
Kuriakose S., Choudhary V., Satpati B., Mohapatra S. Enhanced photocatalytic activity of Ag-ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method. Beilstein J. Nanotechnol. 2014. 5: 639. https://doi.org/10.3762/bjnano.5.75
DOI: https://doi.org/10.15407/hftp14.01.083
Copyright (©) 2023 V. A. Karpyna, L. A. Myroniuk, D. V. Myroniuk, M. E. Bugaiova, L. I. Petrosian, O. I. Bykov, O. I. Olifan, V. V. Strelchuk, O. F. Kolomys, V. R. Romanyuk, K. S. Naumenko, L. O. Artiukh, O. Y. Povnitsa, S. D. Zahorodnia, A. I. Ievtushenko
This work is licensed under a Creative Commons Attribution 4.0 International License.