Chemistry, Physics and Technology of Surface, 2023, 14 (3), 324-340.

Influence of surface steroid groups on sorption of salts of bile acids by mesoporous organosilicas



DOI: https://doi.org/10.15407/hftp14.03.324

N. V. Roik, L. A. Belyakova

Abstract


Regulation of enterohepatic circulation of bile acids in human body is actual task to overcome cardiovascular diseases. The aim of this work was to create biocompatible sorbents with improved sorption ability in relation to bile acids. Mesoporous organosilicas of MCM‑41 type with chemically grafted 3‑aminopropyl and steroid groups were obtained by sol‑gel condensation of tetraethyl orthosilicate and functional silanes in the presence of template cetyltrimethylammonium bromide. Porous structure of synthesized organosilicas was characterized by low‑temperature nitrogen adsorption–desorption and X‑ray diffraction analysis. Formation of typical for MCM‑41 hexagonal arrangement of cylindrical mesopores was confirmed. Structural parameters of synthesized silica materials were calculated. The influence of surface steroid groups on sorption ability of organosilicas was studied on example of bile salts (sodium cholate and taurocholate) in dependence of duration of contact, acidity of medium, and equilibrium concentration. Analysis of kinetic parameters of sorption estimated by Lagergren and Ho-McKey models confirms the proceeding of pseudo-second order process. The most effective sorption of sodium cholate and taurocholate was observed at pH ~ 5 and pH ~ 2, respectively, where the ovterlapping of pH regions of 3‑aminopropyl groups protonation and bile acids dissociation takes place. Analysis of experimentally obtained isotherms by use of Freundlich, Redlich‑Peterson, and BET models was carried out. It has been found that protonated amino groups are the main sorption centers of bile acids protolytic forms by synthesized aminosilica in pH range from 1 to 8. Introduction of steroid groups in surface layer at sol-gel synthesis leads to the increase of bile salts sorption due to the cooperative interactions with formation of supramolecular structures in the surface layer of organosilica. Obtained results prove prospects of usage of organosilica sorbents with surface steroid groups for regulation of bile acids content in human body.


Keywords


sol-gel synthesis; MCM 41; chemical modification; steroid groups; bile salts; sorption

Full Text:

PDF (Українська)

References


Chuiko A.A. (Ed.) Medicinal chemistry and clinical use of silicon dioxide. (Kyiv: Naukova Dumka, 2003). [in Russian].

Jeelani P.G., Mulay P., Venkat R., Ramalingam C. Multifaceted application of silica nanoparticles. A review. Silicon. 2020. 12: 1337. https://doi.org/10.1007/s12633-019-00229-y

Zhou X., Zhang N., Mankoci S., Sahai N. Silicates in orthopedics and bone tissue engineering materials. J. Biomed. Mat. Res. A. 2017. 105A(7): 2090. https://doi.org/10.1002/jbm.a.36061

Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.-W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templated. J. Am. Chem. Sot. 1992. 114(27): 10834. https://doi.org/10.1021/ja00053a020

Li Z., Barnes J.C., Bosoy A., Stoddart J.F., Zink J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012. 41(7): 2590. https://doi.org/10.1039/c1cs15246g

Manzano M., Vallet-Regi M. Mesoporous silica nanoparticles in nanomedicine applications. J. Mater. Sci. Mater. Med. 2018. 29(5): 65. https://doi.org/10.1007/s10856-018-6069-x

Niculescu V.-C. Mesoporous silica nanoparticles for bio-applications. Front. Mater. 2020. 7: 36. https://doi.org/10.3389/fmats.2020.00036

Ghaferi M., Esfahani M.K.M., Raza A., Al Harthi S., Shahmabadi H.E., Alavi S.E. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J. Drug Targeting. 2021. 29(2): 131. https://doi.org/10.1080/1061186X.2020.1812614

Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015. 11(2): 313. https://doi.org/10.1016/j.nano.2014.09.014

Jain P., Hassan N., Iqbal Z., Dilnawaz F. Mesoporous silica nanoparticles: A versatile platform for biomedical applications. Recent Pat. Drug Deliv. Formul. 2018. 12(4): 228. https://doi.org/10.2174/1872211313666181203152859

Hofmann A.F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 2009. 14(7): 2584. https://doi.org/10.2741/3399

Watkins J.B., Klaassen C.D. Absorption, enterohepatic circulation, and fecal excretion of toxicants. In: Comprehensive toxicology. (Oxford: Elsevier, 2010). https://doi.org/10.1016/B978-0-08-046884-6.00847-2

Dawson P.A., Karpen S.J. Intestinal transport and metabolism of bile acids. J. Lipid. Res. 2015. 56(6): 1085. https://doi.org/10.1194/jlr.R054114

Hofmann A.F. Bile acids: The good, the bad, and the ugly. News Physiol. Sci. 1999. 14: 24. https://doi.org/10.1152/physiologyonline.1999.14.1.24

Hageman J., Herrema H., Groen A.K., Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler., Thromb., Vasc. Biol. 2010. 30(8): 1519. https://doi.org/10.1161/ATVBAHA.109.197897

Meissner M., Wolters H., de Boer R.A., Havinga R., Boverhof R., Bloks V.W., Kuipers F., Groen A.K. Bile acid sequestration normalizes plasma cholesterol and reduces atherosclerosis in hypercholesterolemic mice. No additional effect of physical activity. Atherosclerosis. 2013. 228(1): 117. https://doi.org/10.1016/j.atherosclerosis.2013.02.021

Bergheanu S.C., Bodde M.C., Jukema J.W. Pathophysiology and treatment of atherosclerosis. Current view and future perspective on lipoprotein modification treatment. Neth. Heart J. 2017. 25(4): 231. https://doi.org/10.1007/s12471-017-0959-2

Mashkovsky M.D. Medicines. (Kharkov: Torsing, 1997). [in Russian].

Reiner Z., Catapano A.L., De Backer G., Graham I., Taskinen M.-R., Wiklund O., Agewall S., Alegria E., Chapman M.J., Durrington P., Erdine S., Halcox J., Hobbs R., Kjekshus J., Filardi P.P., Riccardi G., Storey R.F., Wood D. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Developed with the special contribution of the European Assocciation for Cardiovascular Prevention and Rehabilitation (EACPR). Eur. Heart J. 2011. 32(14): 1769. https://doi.org/10.1016/j.atherosclerosis.2011.06.012

Haratake M., Ogawa N., Sugii A. Sorption characteristics of anion-exchange resins possessing w-oxoalkyl or w-hydroxyalkyl spacer for bile acids. Anal. Sci. 1989. 5: 687. https://doi.org/10.2116/analsci.5.687

Chen J., Han W., Chen J., Zong W., Wang W., Wang Y., Cheng G., Li C., Ou L., Yu Y. High performance of a unique mesoporous polystyrene-based adsorbent for blood purification. Regen. Biomater. 2017. 4(1): 31. https://doi.org/10.1093/rb/rbw038

Sun L., Duan R., Fan Y., Chen X.-Z., Peng C., Zheng C., Dong L.-Y., Wang X.-H. Preparation of magnetic mesoporous epoxy resin by initiator-free ring-opening polymerization for extraction of bile acids from humanserum. J. Chromatogr. A. 2020. 1609: 460448. https://doi.org/10.1016/j.chroma.2019.460448

Krasopoulos J.C., De Bari V.A., Needle M.A. The adsorption of bile salts on activated carbon. Lipids. 1980. 15: 365. https://doi.org/10.1007/BF02533552

Sasaki Y., Miyassu Y.-I., Lee S., Nagadome S., Igimi H., Sugihara G. The adsorption behavior of four bile salt species on activated carbon in water at 30°C. Colloids Surf. B. 1996. 7(3-4): 181. https://doi.org/10.1016/0927-7765(96)01290-8

Yi R., Song Y., Wu C., Wei G., Yuan R., Chen Y., Ye G., Kowalewski T., Matyjaszewski K. Preparation of nitrogen-doped mesoporous carbon for the efficient removal of bilirubin in hemoperfusion. ACS Appl. Bio. Mater. 2020. 3(2): 1036. https://doi.org/10.1021/acsabm.9b01029

Nichifor M., Zhu X., Baille W., Cristea D., Carpov A. Bile acid sequestrants based on cationic dextran hydrogel microspheres. 2. Influence of the length of alkyl substituents at the amino groups of the sorbents on the sorption of bile salts. J. Pharm. Sci. 2001. 90(6): 681. https://doi.org/10.1002/jps.1024

Kazlauske J., Ramanauskiene K., Liesiene J. Binding of bile acids by cellulose-based cationic adsorbents. Cellul. Chem. Technol. 2014. 48(1-2): 11.

Zhu X., Wen Y., Wang L., Li C., Cheng D., Zhang H., Ni Y. Binding of sodium cholate in-vitro by cationic microfibrillated cellulose. Ind. Eng. Chem. Res. 2014. 53(48): 18508. https://doi.org/10.1021/ie503909g

Shen J., Yang X., Sun X., Gong W., Ma Y., Liu L., Yao J. Amino-functionalized cellulose: a novel and high-efficiency scavenger for sodium cholate sorption. Cellulose. 2020. 7: 4019. https://doi.org/10.1007/s10570-020-03066-0

Clas S.D. Increasing the in vitro bile acid binding capacity of diethylaminoethylcellulose by quaternization. J. Pharm. Sci. 1991. 80(9): 891. https://doi.org/10.1002/jps.2600800918

Goto J., Hasegawa M., Kato H., Nambara T. A new method for simultaneous determination of bile acids in human bile without hydrolysis. Clin. Chim. Acta. 1978. 87(1): 141. https://doi.org/10.1016/0009-8981(78)90068-2

Bloch C.A., Watkins J.B. Determination of conjugated bile acids in human bile and duodenal fluid by reverse-phase high-performance liquid chromatography. Lipid. Res. 1978. 19(4): 510. https://doi.org/10.1016/S0022-2275(20)40724-2

Raedsch R., Hofmann A.F., Tserng K.-Y. Separation of individual sulfated bile acid conjugates as calcium complexes using reversed-phase partition thin-layer chromatography. J. Lipid. Res. 1979. 20(6): 796. https://doi.org/10.1016/S0022-2275(20)40033-1

Belyakova L.A., Besarab L.N., Roik N.V., Lyashenko D.Y., Vlasova N.N., Golovkova L.P., Chuiko A.A. Designing of the centers for adsorption of bile acids on a silica surface. J. Colloid Interface Sci. 2006. 294(1): 11. https://doi.org/10.1016/j.jcis.2005.06.081

Roik N.V., Belyakova L.A. Adsorption of cholic acid on surface of organosilicas containing chemically bound quaternary ammonium groups. Russ. J. Phys. Chem. A. 2006. 80: 1105. https://doi.org/10.1134/S0036024406070181

Belyakova L.A., Besarab L.N. The influence of the structure of the surface of hydrophilic-hydrophobic silicas on the adsorption of cholic acid. Russ. J. Phys. Chem. A. 2007. 81: 1537. https://doi.org/10.1134/S0036024407090373

Belyakova L.A., Varvarin A.M., Roik N.V. Direct chemical assembly of quaternary ammonium groups on a surface of highly dispersed silica. Appl. Surf. Sci. 2006. 253(2): 784. https://doi.org/10.1016/j.apsusc.2006.01.008

Strand J., Lewis R., Wissman C., Carr S. Synthesis and characterization of selective mesoporous sol-gel silica sorbent for detection of estrone in wastewater via molecularly imprinted solid phase extraction. Int. J. Separ. for Environ. Sci. 2012. 1(1): 37.

Budnyak T.M., Vlasova N.N., Golovkova L.P., Slabon A., Tertykh V.A. Bile acids adsorption by chitosan-fumed silica enterosorbent. Colloid Interface Sci. Commun. 2019. 32: 100194. https://doi.org/10.1016/j.colcom.2019.100194

Roda A., Hofmann A.F., Mysels K.J. The influence of bile salt structure on self-association in aqueous solution. J. Biol. Chem. 1983. 258(10): 6362. https://doi.org/10.1016/S0021-9258(18)32418-9

Carey M.C., Small D.M. Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch. Intern. Med. 1972. 130(4): 506. https://doi.org/10.1001/archinte.1972.03650040040005

Staab H.A. Syntheses using heterocyclic amides (azolides).Angew. Chem. Int. Ed. Engl. 1962. 1(7): 51. https://doi.org/10.1002/anie.196203511

Barrett E.P., Joyner L.G., Halenda P.H. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951. 73(1): 373. https://doi.org/10.1021/ja01145a126

Neimark A.V., Ravikovitch P.I., Grun M., Schuth F., Unger K.K. Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption. J. Colloid. Int. Sci. 1998. 207(1): 159. https://doi.org/10.1006/jcis.1998.5748

Gregg S.H., Sing K.S. Adsorption, surface area and porosity. (New York: Academic Press, 1967). https://doi.org/10.1149/1.2426447

Bragg W.L. The diffraction of short electromagnetic waves by a crystal. Mathematical Proceedings of the Cambridge Philosophical Society. 2013. 17. P. 43.

Fenelonov V.B., Romannikov V.N., Derevyankin A.Yu. Mesopore size and surface area calculations for hexagonal mesophases (types MCM-41, FSM-16, etc.) using low-angle XRD and adsorption data. Microporous Mesoporous Mater. 1999. 28(1): 57. https://doi.org/10.1016/S1387-1811(98)00280-7

Ripatti P.O., Popova R.A., Kagan T.B., Bekhtereva Z.A. Spectrophotometric determination of bile acids. Vopr. Med. Khim. 1969. 15(5): 630. [in Russian].

Belyakova L.A., Besarab L.N., Roik N.V., Lyashenko D.Yu., Vlasova N.N., Golovkova L.P., Chuiko A.A. Designing of the centers for adsorption of bile acids on a silica surface. J. Colloid Interface Sci. 2006. 294: 11. https://doi.org/10.1016/j.jcis.2005.06.081

Van Der Voort P., Ravikovitch P.I., De Jong K.P., Benjelloun M., Van Bavel E., Janssen A.H., Neimark A.V., Weckhuysen B.M., Vansant E.F. A new templated ordered structure with combined micro- and mesopores and internal silica nanocapsules. J. Phys. Chem. B. 2002. 106: 5873. https://doi.org/10.1021/jp025642i

Thommes M., Smarsly B., Groenewolt M., Ravikovitch P.I., Neimark A.V. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir. 2006. 22(2): 756. https://doi.org/10.1021/la051686h

Lai W., Yang S., Jiang Y., Zhao F., Li Z., Zaman B., Fayaz M., Li X., Chen Y. Artefact peaks of pore size distributions caused by unclosed sorption isotherm and tensile strength effect. Adsorption. 2020. 26: 633. https://doi.org/10.1007/s10450-020-00228-1

Landers J., Gor G.Yu., Neimark A.V. Density functional theory methods for characterization of porous materials. Colloid. Surf. A. 2013. 437: 3. https://doi.org/10.1016/j.colsurfa.2013.01.007

Reddy B.S., Watanabe K., Sheinfil A. Effect of dietary wheat bran, alfalfa, pectin and carrageenan on plasma cholesterol and fecal bile acid and neutral sterol excretion in rats. J. Nutr. 1980. 110(6): 1247. https://doi.org/10.1093/jn/110.6.1247

Evans D.F., Pye G., Bramley R., Clark A.G., Dyson T.J., Hardcastle J.D. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988. 29(8): 1035. https://doi.org/10.1136/gut.29.8.1035

Freundlich H. Kapillarchemie: Eine Darstellung der Chemie der Kolloide und verwandter Gebiete. (Akademische Verlagsgesellschaf, Leipzig, 1909).

Redlich O., Peterson D.L. A useful adsorption isotherm. J. Phys. Chem. 1959. 63(6): 1024. https://doi.org/10.1021/j150576a611

Gritti F., Guiochon G. New thermodynamically consistent competitive adsorption isotherm in RPLC. J. Colloid Interface Sci. 2003. 264: 43. https://doi.org/10.1016/S0021-9797(03)00332-1

Ebadi A., Mohammadzadeh J.S.S., Khudiev A. What is correct form of BET isotherm for modeling liquid phase adsorption ? Adsorption. 2009. 15: 65. https://doi.org/10.1007/s10450-009-9151-3




DOI: https://doi.org/10.15407/hftp14.03.324

Copyright (©) 2023 N. V. Roik, L. A. Belyakova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.