XRD, EDX та FTIR дослідження біоактивності скла 60S, легованого La та Y в умовах in vitro
DOI: https://doi.org/10.15407/hftp14.01.093
Анотація
Мета роботи – синтез та дослідження біоктивності в умовах in vitro зразків золь-гель скла (60S) мольного складу 60 % SiO2, 36 % CaO, 4 % P2O5 та зразків, допованих La and Y, вивчення їхніх структурних властивостей та змін при контакті з модельним фізіологічним середовищем (SBF Kokubo’s), а також встановлення можливості їх використання для тканинної регенерації та тканинної інженерії.
За результатами дослідження, взаємодія синтезованих зразків з SBF приводить до зміни фазового складу та співвідношення аморфної і кристалічних складових. Необхідно відзначити тривалі та інтенсивні процеси за участю іонів CO32– для нелегованих і легованих зразків. Поява карбонату кальцію у формі ватериту при одночасному збільшенні вмісту кальциту є однією з ознак високої біоактивності синтезованих зразків. За результатами XRD, EDX та FTIR досліджень після 28 діб замочування в SBF, переважаючими елементами поверхні є Ca і Р у складі гідроксиапатиту, а елементний склад свідчить про активні іонообмінні процеси відповідно до теорії розчинення біоактивного скла в фізіологічних рідинах.
Зміна співвідношення кристалічних фаз із включенням переважно однієї кристалічної фази гідроксоапатиту протягом 28 днів призводить до більшої структурованості поверхні синтезованих зразків та вказує на те, що вони мають остеокондуктивні властивості, можуть зв’язуватися з кістковою тканиною та мають відповідну здатність до біодеградації.
Результати дослідження свідчать про перспективність синтезованих матеріалів для тканинної регенерації та тканинної інженерії.
Ключові слова
Посилання
Fiume E., Migneco C., Kargozar S., Verné E., Baino F. Processing of Bioactive Glass Scaffolds for Bone Tissue Engineering. In: Bioactive Glasses and Glass-Ceramics. (eds Baino F., Kargozar S.). 2022. https://doi.org/10.1002/9781119724193.ch7
Rahaman M.N., Day D.E., Sonny Bal B., Fu Q., Jung S.B., Bonewald L.F., Tomsia A.P. Bioactive glass in tissue engineering. Acta Biomater. 2011. 7(6): 2355. https://doi.org/10.1016/j.actbio.2011.03.016
Deshmukh K., Kovářík T., Křenek T., Docheva D., Stich T., Pola J. Recent advances and future perspectives of sol-gel derived porous bioactive glasses: a review. RSC Advances. 2020. 10(56): 33782. https://doi.org/10.1039/D0RA04287K
Bramhill J., Ross S., Ross G. Bioactive Nanocomposites for Tissue Repair and Regeneration: a review. Int. J. Environ. Res. Public Health. 2017. 14(1): 66. https://doi.org/10.3390/ijerph14010066
Vallet-Regí M., Salinas A.J. 6 - Ceramics as bone repair materials. In: Bone Repair Biomaterials. Woodhead Publishing Series in Biomaterials. Second Edition. (Woodhead Publishing. 2019). P. 141. https://doi.org/10.1016/B978-0-08-102451-5.00006-8
Sugiura Y., Niitsu K., Saito Y., Endo T., Horie M. Inorganic process for wet silica-doping of calcium phosphate. RSC Adv. 2021. 11(20):12330. https://doi.org/10.1039/D1RA00288K
Wen C., Bai N., Luo L., Ye J., Zhan X., Zhang Y., Sa B. Structural behavior and in vitro bioactivity evaluation of hydroxyapatite-like bioactive glass based on the SiO2-CaO-P2O5 system. Ceram. Int. 2021. 47(13): 18094. https://doi.org/10.1016/j.ceramint.2021.03.125
Fernandez de Grado G., Keller L., Idoux-Gillet Y., Wagner Q., Musset A.-M., Benkirane-Jessel N., Offner D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 2018. 9: 1. https://doi.org/10.1177/2041731418776819
Bianchi E., Vigani B., Viseras C., Ferrari F., Rossi S., Sandri G. Inorganic Nanomaterials in Tissue Engineering. Pharmaceutics. 2022. 14(6): 1127. https://doi.org/10.3390/pharmaceutics14061127
Kaygili O., Keser S., Tatar C., Koytepe S., Ates T. Investigation of the structural and thermal properties of Y, Ag and Ce-assisted SiO2-Na2O-CaO-P2O5-based glasses derived by sol-gel method. J. Therm. Anal. Calorim. 2016. 128(2) 765. https://doi.org/10.1007/s10973-016-6012-7
Fandzloch M., Bodylska W., Barszcz B., Trzcińska-Wencel J., Roszek K., Golińska P., Lukowiak A. Effect of ZnO on sol-gel glass properties toward (bio)application. Polyhedron. 2022. 223: 1. https://doi.org/10.1016/j.poly.2022.115952
Awaid M., Cacciotti I. Bioactive Glasses with Antibacterial Properties: Mechanisms, Compositions and Applications. In: Bioactive Glasses and Glass-Ceramics. (John Wiley & Sons, Inc., 2022). https://doi.org/10.1002/9781119724193.ch23
Sharifianjazi Fariborz, Parvin Nader, Tahriri Mohammadreza. Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses. J. Non-Cryst. Solids. 2017. 476: 108113. https://doi.org/10.1016/j.jnoncrysol.2017.09.035
Liu L., Pushalkar S., Saxena D., LeGeros R.Z., Zhang Y. Antibacterial property expressed by a novel calcium phosphate glass. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2013. 102(3): 423. https://doi.org/10.1002/jbm.b.33019
Xia Li, Xiupeng Wang, Dannong He, Jianlin Shi. Synthesis and characterization of mesoporous CaO -MO-SiO2-P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites. J. Mater. Chem. 2008. 18(34): 4103. https://doi.org/10.1039/b805114c
Simon V., Albon C., Simon S. Silver release from hydroxyapatite self-assembling calcium-phosphate glasses. J. Non-Cryst. Solids. 2008. 354(15-16): 1751. https://doi.org/10.1016/j.jnoncrysol.2007.08.063
Giannoulatou V., Theodorou G.S., Zorba T., Kontonasaki E., Papadopoulou L., Kantiranis N., Chrissafis K., Zachariadis G., Paraskevopoulos K.M. Magnesium calcium silicate bioactive glass doped with copper ions; synthesis and in-vitro bioactivity characterization. J. Non-Cryst. Solids. 2018. 500: 98. https://doi.org/10.1016/j.jnoncrysol.2018.06.037
Seyedmomeni Sh.S., Naeimi M., Raz M., Aghazadeh Mohandesi J., Moztarzadeh F., Baghbani F., Tahriri M. Synthesis, Characterization and Biological Evaluation of a New Sol-Gel Derived B and Zn-Containing Bioactive Glass: In Vitro Study. Silicon. 2018. 10(2): 197.
https://doi.org/10.1007/s12633-016-9414-z
Wren A.W., Jones M.C., Misture S.T., Coughlan A., Keenan N.L., Towler M.R., Hall M.M. A preliminary investigation into the structure, solubility and biocompatibility of solgel SiO2-CaO-Ga2O3 glass-ceramics. Mater. Chem. Phys. 2014. 148(1-2): 416. https://doi.org/10.1016/j.matchemphys.2014.08.006
Thanasrisuebwong P., Jones J.R., Eiamboonsert S., Ruangsawasdi N., Jirajariyavej B., Naruphontjirakul P. Zinc-Containing Sol-Gel Glass Nanoparticles to Deliver Therapeutic Ions. J. Nanomater. 2022. 12(10): 1691. https://doi.org/10.3390/nano12101691
Moonesi Rad R., Alshemary A.Z., Evis Z., Keskin D., Altunbaş K., Tezcaner A. Structural and biological assessment of boron doped bioactive glass nanoparticles for dental tissue applications. Ceram. Int. 2018. 44(8): 9854. https://doi.org/10.1016/j.ceramint.2018.02.230
Hamadouche M., Meunier A., Greenspan D.C., Blanchat C., Zhong J.P., La Torre G.P., Sedel L. Long-termin vivo bioactivity and degradability of bulk sol-gel bioactive glasses. J. Biomed. Mater. Res. 2000. 54(4): 560. https://doi.org/10.1002/1097-4636(20010315)54:4<560::AID-JBM130>3.0.CO;2-J
Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006. 27(15): 2907. https://doi.org/10.1016/j.biomaterials.2006.01.017
Schröder R., Pohlit H., Schüler T., Panthöfer M., Unger R.E., Frey H., Tremel W. Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation. J. Mater. Chem. B. 2015. 3(35). 7079. https://doi.org/10.1039/C5TB01032B
Kusyak A., Petranovska A., Dubok V., Chornyy V., Bur'yanov O., Korniichuk N., Gorbyk P. Adsorption immobilization of chemotherapeutic drug cisplatin on the surface of sol-gel bioglass 60S. Funct. Mater. 2021. 28(1): 97.
Vagenas N. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta. 2003. 59(4): 831. https://doi.org/10.1016/S0039-9140(02)00638-0
Tilocca A., Cormack Alastair N. The initial stages of bioglass dissolution: a Car-Parrinello molecular-dynamics study of the glass-water interface. Proceedings of the Royal Society A. 2011. 467: 2102. https://doi.org/10.1098/rspa.2010.0519
Kusyak A., Dubok V., Chornyi V., Petranovska A., Gorbyk P., Abudayeh A. Features of biodegradation of sol-gel bioactive glass 60S doped with Ga, Ge. Mol. Cryst. Liq. Cryst. 2021. 719(1): 29. https://doi.org/10.1080/15421406.2020.1862457
Buryanov O.A., Chornyi V.S., Dubok V.A., Savosko S. Reparative Regeneration by Substitution of Bone Tissue Defects with Bioglass, Using Regeneration Technologies. Int. J. Morphol. 2021. 39(1): 186. https://doi.org/10.4067/S0717-95022021000100186
Neščáková Z., Kaňková H., Galusková D., Galusek D., Boccaccini A.R., Liverani L. Polymer (PCL) fibers with Zn-doped mesoporous bioactive glass nanoparticles for tissue regeneration. Int. J. Appl. Glass Sci. 2021. 12(4): 588. https://doi.org/10.1111/ijag.16292
Kurtuldu F., Mutlu N., Michálek M., Zheng K., Masar M., Liverani L., Chen S., Galusek D., Boccaccini A.R. Cerium and gallium containing mesoporous bioactive glass nanoparticles for bone regeneration: Bioactivity, biocompatibility and antibacterial activity. Mater. Sci. Eng. C. 2021. 124: 112050. https://doi.org/10.1016/j.msec.2021.112050
Wetzel R., Bartzok O., Brauer D.S. Influence of low amounts of zinc or magnesium substitution on ion release and apatite formation of Bioglass 45S5. J. Mater. Sci.: Mater. Med. 2020. 31(10): 86. https://doi.org/10.1007/s10856-020-06426-1
Hench L. Bioceramics. J. Am. Ceram. Soc. 1998. 81(7): 1705. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
DOI: https://doi.org/10.15407/hftp14.01.093
Copyright (©) 2023 A. P. Kusyak, O. I. Oranska, D. Marcin Behunova, A. I. Petranovska, V. S. Chornyi, O. A. Bur'yanov, V. A. Dubok, P. P. Gorbyk
This work is licensed under a Creative Commons Attribution 4.0 International License.