Chemistry, Physics and Technology of Surface, 2012, 3 (2), 172-177.

Synthesis and Properties of CuO-Modified Titania Composites Deposited on Nanosilica A-300 Surface



M. A. Nazarkovsky, E. V. Goncharuk, E. M. Pakhlov, E. I. Oranska, E. Skwarek, J. Skubiszewska-Zięba, R. Leboda, W. Janusz, V. M. Gun'ko

Abstract


SiO2/TiO2/CuO composites have been synthesized by deposition technique using low temperature hydrolysis of TiCl4 and thermolysis of Cu(CH3CO2)2·H2O at silica A-300 surface. The properties of the samples have been explored by means of XRD, nitrogen adsorption, potentiometric titration, and photon correlation spectroscopy. As the results indicate, there are both anatase and some amount of rutile formed at CCuO = 1 wt.%. A gradual shift of the point of zero charge (from pH = 3.48 to 6.60) has been observed with increasing CuO content.

Full Text:

PDF (Русский)

References


Xu Y., Chen D., Jiao X., Xue K. Mat. Res. Bulletin. 2007. 42. 1723.

Samarasekara P., Kumara N.T.RN., Yapa N.U.S. J. Phys.: Condens. Matter. 2006. 18. 2417.

Gao X.P., Bao J.L., Pan G.L. et al. J. Phys. Chem. 2004. 108. 5547.

Seo S.-D., Jin Y.-H., Lee S.-H. et al. Nan. Res. Let. 2011. 6. 1.

Wang X., Hu Ch., Liu H. et al. Sensors and Actuators B. 2010. 144. 220.

Zhang X., Zhang D., Ni X., Zheng H. Solid-State Electronics. 2008. 52. 245.

O’keeffe M., Stone F.S. J. Phys. Chem. Sol. 1962. 23. 261.

Roden B., Braun E., Freimuth A. SSCom. 1987. 64. 1051.

Yang B.X., Tranquada J.M., Shirane G. Phys. Rev. B. 1988. 38. 174.

Rahimnejad S., Setayesh S.R., Gholami M.R. J. Iran. Chem. Soc. 2008. 5. 367.

Francisco M.S.P., Mastelaro V.R. Chem. Mater. 2002. 14. 2514.

Yu X.-F., Wu N.-Z., Xie Y.-Ch., Tang Y.-Q. J. Mater. Chem. 2010. 10. 1629.

Zhu H., Dong L., Chen Y. J. Colloid Interface Sci. 2011. 357. 497.

M. Arumugam, N. Selvaraj, Kumar A. et al. Sci. Adv. Mat. 2010. 2. 51.

Huang J., Wang Sh., Zhao Y. et al. Catal. Comm. 2006. 7. 1029.

Larsson P.-O., Andersson A., Wallenberg L.R., Svensson B. J. Catal. 1996. 16. 279.

Jiang X., Jia Y., Huang H.P., Zheng X. Catal. Lett. 2005. 104. 169.

Kim K.-H., Ihm S.-K. J. Hazardous Mat. 2007. 146. 610.

Yu J., Hai Y., Jaroniec M. J. Colloid Interface Sci. 2011. 357. 223.

Xu Sh., Sun D.D. Int. J. Hydrogen Energy. 2009. 24. 6096.

Poliah R., Sreekantan S. J. Nanomaterials. 2011. Art. ID 239289.

Chen R.-F., Zhang C.-X., Deng J., Song G.-Q. Inter. J. Minerals, Metallurgy and Materials. 2009. 16. 220.

Некрасов Б.В. Основы общей химии – Т. 1. – Москва. Химия, 1973. – 656 с.

Рабинович В.А., Справочник химика, Т.2. – Ленинград–Москва: Химия, 1964. – 1165 с.

Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. London: Academic Press.,1982.

Adamson A.W., Gast A.P. Physical Chemistry of Surface. New York: John Wiley & Sons.,1997.

Rouquerol F., Roquerol J., Sing K. Adsorption by powders and porous solids. principles, methodology and applications. Elsevier, 1999.

Scherrer P. Ges. Wiss. Göttingen. 1918. 26. 98.

Riyas S., Krishnan G., Mohan Das P.N. J. Ceram. Processing Research. 2006. 7. 301.

Кристиан Г. Аналитическая химия, Т. 1, – Москва: Бином, 2009. – 623 c.

Hackley V.A., Ferraris Ch.F. Natl. Inst. Stand. Technol. Spec. Publ. 960–3,2001.

Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. – Москва: Химия, 1989. – 464 c.

Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Adv. Colloid Interface Sci. 2001. 91(1). 1.




Copyright (©) 2012 M. A. Nazarkovsky, E. V. Goncharuk, E. M. Pakhlov, E. I. Oranska, E. Skwarek, J. Skubiszewska-Zięba, R. Leboda, W. Janusz, V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.