Chemistry, Physics and Technology of Surface, 2015, 6 (2), 216-223.

TGA-DSC-MS analysis of silicon carbide and of its carbon-silica precursor



DOI: https://doi.org/10.15407/hftp06.02.216

I. Yu. Tishchenko, O. O. Ilchenko, P. O. Kuzema

Abstract


Pure beta silicon carbide of submicron and micron particle size has been synthesized via carbothermal reduction of nanosilica. The resulted powder and its carbon-silica precursor were characterized by means of FTIR spectroscopy, electron microscopy, and X-ray diffraction. The results of TGA-DSC-MS analysis indicate a possibility to estimate by this technique the carbon content in carbon-silica precursor as well as residual carbon in silicon carbide with the sensitivity about 5 ppm.

Keywords


carbothermal reduction; carbon-silica nanocomposite; silicon carbide; electron microscopy; TGA; DSC

Full Text:

PDF

References


1. Saddow S.E., Agarwal A. Advances in Silicon Carbide Processing and Applications, Artech House Inc., Boston and London, 2004, 212 p.

2. Harris G.L. Properties of Silicon Carbide, INSPEC, London, 1995, 289 p.

3. Somiya S., Inomata Y. Silicon Carbide Ceramics–l: Fundamental and Solid Reaction, Elsevier, London and New York, 1991, 456 p.

4. Baliga B.J. Silicon Carbide Power Devices, World Scientific Publishing, Singapore, 2005, 503 p.

5. Friedrichs P., Kimoto T., Ley L., Pensl G. Silicon Carbide: Power Devices and Sensors, Wiley-VCH, Weinheim, 2010, 500 p.

6. Casady J.B., Johnson R.W. Status of silicon carbide (SiC) as a wide-bandgap semicon-ductor for high-temperature applications: A review, Solid-State Electron., 39 (1996) 1409.

7. Choyke W.J., Matsunami H., Pensl G. Silicon Carbide. Recent Major Advances, Springer, Berlin, 2004,

8. Wijesundara M.B.J., Azevedo R.G. Silicon Carbide Microsystems for Harsh Environments, Springer, New York, 2011, 232 p.

9. El-Gallab M., Sklad M. Machining of Al/SiC particulate metal-matrix composites. Part I: Tool performance., J. Mater. Process. Technol., 83 (1998) 151.

10. Jia K., Fischer T.E. Abrasion resistance of nanostructured and conventional cemented carbides, Wear, 200 (1996) 206.

11. Gerhardt R. Properties and Applications of Silicon Carbide, InTech, Rijeka and Shanghai, 2011.

12. Weimer A.W., Nilsen K.J., Cochran G.A., Roach R.P. Kinetics of carbothermal reduction synthesis of beta silicon carbide, AIChE J., 39 (1993) 493.

13. Krstic V.D. Production of fine, high-purity beta silicon carbide powders, J. Am. Ceram. Soc., 75 (1992) 170.

14. Blumenthal J.L., Santy M.J., Burns E.A. Kinetic studies of high-temperature carbon-silica reactions in charred silica-reinforced phenolic resins, AIAA J., 4 (1966) 1053.

15. Klinger N., Strauss E.L., Komarek K.L. Reactions between silica and graphite, J. Amer. Ceram. Soc., 49 (1966) 369.

16. Khalafalla S.E., Haas L.A. Kinetics of carbothermal reduction of quartz under vacuum, J. Amer. Ceram. Soc., 55 (1972) 414.

17. Viscorni F., Himmel L. Kinetic and mechanistic study on the formation of silicon carbide from silica flour and coke breeze, J. Metals, 6 (1978) 21.

18. Ono K., Kurachi Y. Kinetic studies on β-SiC formation from homogeneous precursors, J. Mat. Sci., 26 (1991) 388.

19. Alekseev S.A., Zaitsev V.N., Botsoa J., Barbier D. Fourier transform infrared spectroscopy and temperature-programmed desorption mass spectrometry study of surface chemistry of porous 6H-SiC, Chem. Mater., 19 (2007) 2189.

20. Kevorkijan V.M., Komac M., Kolar D. Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO2, J. Mater. Sci., 27 (1992) 2705.




DOI: https://doi.org/10.15407/hftp06.02.216

Copyright (©) 2015 I. Yu. Tishchenko, O. O. Ilchenko, P. O. Kuzema

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.