Chemistry, Physics and Technology of Surface, 2016, 7 (3), 300-308.

Synthesis, structure and electrochemical properties of ultrafine amorphous β-FeOOH



DOI: https://doi.org/10.15407/hftp07.03.300

A. B. Hrubiak, V. O. Kotsyubynsky, L. V. Mokhnatska, V. V. Moklyak, P. I. Kolkovsky, G. I. Mudryk

Abstract


The aim of the article is to findrelationshipsbetween synthesis conditions and phase composition, magnetic microstructure and electrochemical properties of ultrafine amorphous iron hydroxide phases obtained by iron citrate sol hydrothermal treatment. The sol of iron citrate was formed by mixing of 0.3 M iron nitrate aqueous solutions with citric acid. Hydrothermal treatment of iron citrate was carried out at 120°C for 5 hours with the next annealing of precipitation at 150, 200, 250, 300 and 350°C in air for 2 hours. X-ray analysis and Mössbauer spectroscopy were used for phase composition and magnetic microstructure control of the obtained iron hydroxides. All the synthesized materials were X-ray amorphous so the Mössbauer spectroscopy was used for phases recognition. In has been determined that the hydrothermal treatment of iron citrate solution at 120°C for 5 hours leads to Fe(OH)3formation.The annealing in the temperature range of 150–200 °C causes the reduction of iron Fe3+ → Fe2+as aresult of material dehydration . Under this condition the composite Fe(OH)3/ Fe(OH)2 was formed with the pentahydrate iron citrate C6H5O7Fe×5H2O and iron oxalate FeC2 O4 ·2H2 O presence . Amorphous ultrafine β -FeOOH was obtained after Fe(OH)3annealing at 250°C for 2 hours . It has been found that after annealing at 350°Cphase transformation of β- FeOOH→α-Fe2 O3has occurred. The sizes of coherent scattering regions for α-Fe2 O3 phase are about 15.0±1.5 nm. The electrochemical properties of ultrafine amorphous β-FeOOH and composite β-FeOOH/carbon nanotubes in 3.5M KOH aqueous solution were studied. The efficiency of β-FeOOH/carbon nanotube as potential electrode material for supercapacitor was shown.

Keywords


amorphous ultrafine β-FeOOH; ion of iron; magnetic microstructure; phase transformation

Full Text:

PDF (Українська)

References


1. Xiong W., Xiangying C., Lisheng G., Huagui Z., Mingrong J., Chenming T., Tao S., Zude Z. Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. J. Mater. Chem. 2004. 14: 905.  https://doi.org/10.1039/B310722A 

2. Zhihui X., Jianru L., Lixiang Z. Template-Free Hydrothermal Synthesis of β-FeOOH Nanorods and Their Catalytic Activity in the Degradation of Methyl Orange by a Photo-Fenton-Like Process. Open Journal of Inorganic Non-Metallic Materials. 2013. 3(4): 58.  https://doi.org/10.4236/ojinm.2013.34010 

3. Frausto C.T., Garcia A.A. Zinc and Pyrrole-added Akaganeite (β-FeOOH) Films by Ultrasonic Spray Pyrolisis Assessed as Propane Sensors. Sensors and Transducers. 2012. 146(11): 170.

4. Garcia K. E., Barrero C.A., Morales A.L., Greneche J.-M. Magnetic structure of synthetic akaganeite: A review of Mössbauer data. Rev. Fac. Ing. Univ. Antioquia. 2009. (49): 185.

5. Amine K., Yasuda H., Yamachi M. β-FeOOH, a new positive electrode material for lithium secondary batteries. J. Power Sources. 1999. 81–82(1–2): 221.  https://doi.org/10.1016/S0378-7753(99)00138-X 

6. Mackay A.L. β-Ferric Oxyhydroxide–Akaganéite. Mineral Mag. 1962. 33(259): 270.  https://doi.org/10.1180/minmag.1962.033.259.02 

7. Post J. E., Buchwald V. F. Crystal structure refinement of akaganeite. Am. Mineral. 1991. 76(1–2): 272.

8. Post J.E., Heaney P.J., Von Dreele R.B., Hanson J.C. Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. Am. Mineral. 2003. 88(5): 782.  https://doi.org/10.2138/am-2003-5-607 

9. Chambaere D.G., De Grave E. On the influence of the dual iron co-ordination on the hyperfine field in βFeOOH. Journal of Magnetic and Magnetism Materials. 1984. 44: 349.  https://doi.org/10.1016/0304-8853(84)90263-4 

10. Pollard R.J., Cardile C.M., Lewis D.G., Brown L.J. Characterization of FeOOH Polymorphs and Ferrihydrite Using Low-Temperature, Applied-Field, Mössbauer Spectroscopy. Clay Miner. 1992. 27: 57.  https://doi.org/10.1180/claymin.1992.027.1.06 

11. Pankhurst Q.A., Pollard R.J. Mossbauer-spectra of antiferromagnetic powders in applied fields. J. Phys.: Condens. Matter. 1990. 2(35): 7329.  https://doi.org/10.1088/0953-8984/2/35/008 

12. Rezel D., Genin J.M.R. The substitution of chloride ions to OH−-Ions in the akaganeite beta ferric oxyhydroxide studied by Mössbauer effec. Hyperfine Interact. 1990. 57(1): 2067.  https://doi.org/10.1007/BF02405765 

13. Dezsi I., Keszthelyi L., Kutgawczuk D., Moln B. Eissa N.A. Mössbauer Study of β- and δ-FeOOH and their Disintegration Products. Phys. Stat. Sol. 1967. 22(2): 617.  https://doi.org/10.1002/pssb.19670220234 

14. Braun H., Gallagher K.J. β-Fe2O3, a New Structural Form of Iron (III) Oxide. Nature Phys. Sci. 1972. 240: 13.  https://doi.org/10.1038/physci240013a0 

15. Howe A.T., Gallagher K.J. Mössbauer studies in the colloid system β-FeOOH–β-Fe2O3: structures and dehydration mechanism. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1975. 71: 22.

16. Gonzalez-Calbet J.M., Alario Franco M.A. A thermogravimetric and electron microscopy study of the decomposition of akaganeite. Thermochim. Acta. 1982. 58(1): 45.  https://doi.org/10.1016/0040-6031(82)87138-4 

17. Chambaere D.G., De Grave E. The β-FeOOH to α-Fe2O3 phase transformation: Structural and magnetic phenomena. Phys. Chem. Miner. 1985. 12(3): 176.  https://doi.org/10.1007/BF00308211 

18. Nagai N., Hosoito N., Kiyama M., Shinjo T., Takada T. The Thermal Decomposition Intermediate Product of P-FeO(OH). In: Ferrites. Proc. of the International Conference (Sept.-Oct., 1980, Japan). P. 247.

19. Revo S., Alekseev A., Ivanenko E., Labi T., Boubertakh A., Hamamda S. Structure, tributechnical, and thermophysical characterristics of the fluoroplastic carbonnanotubes material. Nanoscale Res. Lett. 2014. 9(1): 1.  https://doi.org/10.1186/1556-276X-9-213 

20. Gin'e A. X-ray crystal. Theory and practice. (Moscow: Science, 1961).

21. Sei J.O., Cook D.C., Townsend H.E. Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel. Hyperfine Interact. 1998. 112(1–4): 59.

22. Bassi P.S., Randhawa B.S., Jamwal H.S. Mossbauer study of the thermal decomposition of iron(III) citrate pentahydrate. J. Therm. Anal. 1984. 29: 439. https://doi.org/10.1007/BF01913454 

23. Buchanan D.N.E. Mossbauer and spectroscopy of radiolytic photolytic effects on ferric citrate. J. Inorg. Nucl. Chem. 1970. 32(11): 3531.  https://doi.org/10.1016/0022-1902(70)80161-0 

24. Bernal J.D., Dasgupta D.R., Mackay A.L. The Oxides and Hydroxides of Iron and Their Structural Inter-Relationships. Clay Miner. 1959. 4(21): 15.  https://doi.org/10.1180/claymin.1959.004.21.02 

25. Chambaere D.G., De Grave E., Vanleerberghe R.L., Vandenberghe R.E. The electric field gradient at the iron sites in β-FeOOH. Hyperfine Interact. 1984. 20(4): 249.  https://doi.org/10.1007/BF02069375 

26. Chambaere D.G., De Grave E. A study of the non-stoichiometrical halogen and water content of β-FeOOH. Phys. Stat. Sol. 1984. 83: 93.  https://doi.org/10.1002/pssa.2210830109 

27. Stahl K., Nielsen K., Jiang J., Lebech B., Hanson J.C., Norby P., Lanschot J. On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros. Sci. 2003. 45(11): 2563.  https://doi.org/10.1016/S0010-938X(03)00078-7 

28. Barrero C.A., Garcia K.E., Morales A.L. Kodjikian S., Greneche J.M. New analysis of the Mössbauer spectra of akaganeite. J. Phys.: Condens. Matter. 2006. 18(29): 6827.  https://doi.org/10.1088/0953-8984/18/29/020 

29. Garcia K.E., Morales A.L., Barrero C.A., Greneche J.M. Characterization of akaganeite synthesized in the presence of Al3+, Cr3+, and Cu2+ ions and urea. Mater. Chem. Phys. 2008. 112(1): 120.  https://doi.org/10.1016/j.matchemphys.2008.05.021 

30. Garcia K.E., Morales A.L., Barrero C.A., Arroyave C.E., Greneche J.M. Magnetic and crystal structure refinement in akaganeite nanoparticle. Physica B. 2004. 354(1–4): 187.  https://doi.org/10.1016/j.physb.2004.09.045 

31. Kuzmann E., Nagy S., Vertes A. Critical Review Of Analytical Applications Of Mossbauer Spectroscopy Illustrated By Mineralogical And Geological Examples. Pure Appl. Chem. 2003. 75(6): 801.  https://doi.org/10.1351/pac200375060801 

32. Long C., Jiang L., Wei T. Yan J., Fan Z. High-performance asymmetric supercapacitors with lithium interca-lation reaction using metal oxide-based composites as electrode materials. J. Mater. Chem. A. 2014. 2(39): 16678.  https://doi.org/10.1039/C4TA03241A 




DOI: https://doi.org/10.15407/hftp07.03.300

Copyright (©) 2016 A. B. Hrubiak, V. O. Kotsyubynsky, L. V. Mokhnatska, V. V. Moklyak, P. I. Kolkovsky, G. I. Mudryk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.