Chemistry, Physics and Technology of Surface, 2017, 8 (2), 107-119.

Properties of polyethylene–carbon nanotubes composites



DOI: https://doi.org/10.15407/hftp08.02.107

Yu. I. Sementsov, S. N. Makhno, S. V. Zhuravsky, M. T. Kartel

Abstract


The production of stable dispersions of carbon nanotubes (CNTs), synthesized by CVD, in different liquids, is one of the methods of preparation of CNTs for introduction into polymeric matrix. The aim of this work is to produce composites of polyethylene (PE) – CNT, and the study of their structural characteristics, mechanical, thermodynamic, and kinetic properties as dependent on the concentration of multi-walled CNTs and the preliminary dispersion by several methods. Multi-walled CNTs were synthesized by catalytic pyrolysis (CCVD) using iron-containing catalyst in admixture with pyrogenic silica (grade A 300), which was prepared by coprecipitation of hydroxides of aluminum, magnesium and divalent iron. CNTs with a diameter of 10–20 nm were grown in a reactor with a volume of 24 dm3 with a smooth mixing of the catalyst layers due to rotation of the reactor. Deagglomeration of CNTs was carried out by processing in an ultrasonic dispergator or in a device that combines the cavitation mixing and shear deformation in aqueous solutions of different composition. Composite samples of the of PE–CNT with different concentration of the filler obtained by hot pressing at the temperature of 140 °C and the pressure of 5 MPa of polyethylene powders. Their surface was pre-deposited CNTs from stable aqueous dispersions. The structural characteristics of the CNTs and the composite of PE–CNTs is determined by the methods of transmission electron microscopy (JEM-100CXII), X-ray diffraction (DRON-3M, λСо = 0.179 nm). Structural and phase transitions and the processes of destruction of polymer composites in air are investigated by methods of DTA and DTG on a derivatograph Q 1500 D (Hungary). Electric conductivity at low frequencies (0.1, 1 and 10 kHz) was measured by double contact method with an immittancemeter E7-14. The frequency dependence of complex electric conductivity of the composites was evaluated from calculations of the impedance spectra in the frequency range 10-2–106 Hz obtained by an impedance spectrometer Solartron SI 1260. The carbon nanotubes (CNTS) introduction in a matrix of polyethylene in small amounts (up to 5 wt. %) leads to a nonmonotonic change of the degree of crystallinity of the matrix. Their electrophysical and thermodynamic properties were studied. The percolation threshold in systems PE–CNTs from certain experimental data on the electrical conductivity is in the range 0.0015–0.0020 in volume. The content CNT to 2 % increases the temperature of the thermal oxidative degradation of the polymer by almost 60 °C. Influence of CNTs on the structure and properties of the composite is the more significant, the greater the degree of CNTs deagglomeration.


Keywords


carbon nanotubes; polyethylene; nanocomposites; degree of crystallinity; electroconductivity; thermodynamic properties; percolation threshold

Full Text:

PDF (Українська)

References


1. Rakov E.H. Nanotubes and fullerenes: a Training manual. (Moscow: University book, Logos, 2006). [in Russian].

2. Treacy M.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996. 381: 678. https://doi.org/10.1038/381678a0

3. Mykytaev A.K., Kozlov H.V., Zaykov H.E. Polymer nanocomposites: variety of structural forms and applications. (Moscow: Nauka, 2009). [in Russian].

4. Makunyn A.V., Chechenyn N.H. Polymer-nanocarbon materials for space technologies. Band 1. Synthesis and properties of nanocarbon structures: textbook. (Moscow: University book, 2011). [in Russian].

5. Hao Y., Qunfeng Z., Fei W., Weizhong Q., Guohua L. Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism. Carbon. 2003. 41(14): 2855. https://doi.org/10.1016/S0008-6223(03)00425-1

6. Wei F., Zhang Q., Qian W.-Z., Yu H., Wang Y., Luo G.-H., Xu G.-H., Wang D.-Zh. The mass production of carbon nanotubes using a nanoagglomerate fluidized bed reactor: A multiscale space–time analysis. Powder Technol. 2008. 183(1): 10. https://doi.org/10.1016/j.powtec.2007.11.025

7. Krivoruchko O.P., Maksimova N.I., Zaikovskii V.I., Salanov A.N. Study of multiwalled graphite nanotubes and filaments formation from carbonized products of polyvinyl alcohol via catalytic graphitization at 600–800 °C in nitrogen atmosphere. Carbon. 2000. 38(7): 1075. https://doi.org/10.1016/S0008-6223(99)00225-0

8. Zhao Q., Wagner H.D. Raman spectroscopy of carbon nanotube – based composites. Phil. Trans. R. Soc. Lond. A. 2004. 362(1824): 2407.

9. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Comp. Sci. Technol. 2009. 69(10): 1486. https://doi.org/10.1016/j.compscitech.2008.06.018

10. Bokobza L. Multiwall carbon nanotube elastomeric composites. A review. Polymer. 2007. 48(17): 4907. https://doi.org/10.1016/j.polymer.2007.06.046

11. Grunlan J.C., Liu L., Regev O. Weak polyelectrolyte control of carbon nanotube dispersion in water. J. Colloid Interface Sci. 2008. 317(1): 346. https://doi.org/10.1016/j.jcis.2007.08.057

12. Wang Zh., Shirley M.D., Meikle S.T., Whitby R.L.D., Mikhalovsky S.V. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon. 2009. 47(1):73. https://doi.org/10.1016/j.carbon.2008.09.038

13. Marsh D.H., Rance G.A., Zaka M.H., Whitby R.J., Khlobystov A.N. Comparison of the stability of multiwalled carbon nanotube dispersions in water. Phys. Chem. Chem. Phys. 2007. 9: 5490. https://doi.org/10.1039/b708460a

14. Ukrainian Standard: TU U 24.1-03291669-009:2009. CARBON NANOTUBES. (ISC NAS of Ukraine).

15. Melezhyk A.V., Sementsov Yu.I., Yanchenko V.V. Synthesis of thin carbon nanotubes on co-precipitated metaloxide catalysts. Russ. J. Appl. Chem. 2005. 78(6): 938.

16. Sementsov Yu.I., Melezhyk O.V., Prikhod'ko G.P. et al. Synthesis, structure, physico-chemical properties of nanocarbon materials. Physical chemistry on nanomaterials and supramolecular structures. (Kyiv: Naukova dumka, 2007). [in Russian].

17. Ovcharenko M.S. Ph.D. Thesis. (Sumy, 2011). [in Ukrainian].

18. Sementsov Yu.I., Prykhod'ko H.P., Kartel M.T., Makhno S.M., Hrabovs'kyy Yu.Ye., Alyeksyeyev O.M., Pinchuk-Ruhal T.M. Composites polypropylene – carbon nanotubes: structural features, physico-chemical properties. Poverkhnya (Surface). 2012. 4: 203. [in Ukrainian].

19. Sementsov Yu.I., Melezhyk A.V., Pyatkovsky M.L. et al. Properties of PTFE-MWNT Composite Materials. Hydrogen Materials Science and Chemistry of Carbon Na-nomaterials. NATO Security through Science. Series A: Chemistry and biology. Springer Science + Bussines Media. 2007. 757.

20. Minus M.L., Chae H.G., Kumar S. Polyethylene Crystallization Nucleated by Carbon Nanotubes under Shear. ACS Appl. Mater. Interfaces. 2012. 4(1): 326. https://doi.org/10.1021/am2013757

21. Xu Y., Ray G., Abdel-Magid B. Thermal behavior of single-walled carbon nanotube polymer matrix composites. Composites Part A. 2006. 37(1): 114. https://doi.org/10.1016/j.compositesa.2005.04.009

22. Bakshi S.R., Tercero J.E., Agarwal A. Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique. Composites Part A. 2007. 38(12): 2493. https://doi.org/10.1016/j.compositesa.2007.08.004

23. Mc Nally T., Potschke P., Halley P., Murphyc M., Martinc D., Belld S.E.J., Brennane G.P., Beinf D., Lemoineg P., Quinn J.P.Polyethylene multiwalled carbon nanotube composites. Polymer. 2005. 46(19): 8222. https://doi.org/10.1016/j.polymer.2005.06.094

24. Novak D.S., Bereznenko N.M., Shostak T.S. Strumipriva on the nanocomposites of polyethylene. Rock destruction and metal-working tools – technology of manufacture and applications. Collection of scientific papers. The ISM NAS of Ukraine. 2011.14: 394. [in Russian].

25. Lisunova M.O., Mamunya Ye.P., Lebovka N.I., Melezhyk A.V. Percolation behaviour of ultrayigh molecular weight polyethylene/ multi-walled carbon nanotubes composites. Eur. Polym. J. 2007. 43(3): 949. https://doi.org/10.1016/j.eurpolymj.2006.12.015

26. Kovalska E.O., Sementsov Yu.I. Carbon nanotubes deagglomeration in aqueous solutions. Nanomaterials Imaging Techniques, Surface Studies, and Applications. (New York: Springer Science+Bussines Media, 2013). https://doi.org/10.1007/978-1-4614-7675-7_5

27. Chmutin I.A., Letyagin S.V., Shevchenko V.G. Conductive polymer composites: structure, contact phenomena, anisotropy. Polym. Sci. 1994. 36(4): 699. [in Russian].

28. Shevchenko V.H., Ponomarenko A.T. Transport processes in electrically conducting particulate-filled polymer composites. Russ. Chem. Rev. 1983. 52(8): 1336. [in Russian]. https://doi.org/10.1070/RC1983v052n08ABEH002881

29. Smith L.N. Percolation in two-dimensional conductor-insulator networks with controllable anisotropy. Phys. Rev. B. 1979. 20(9): 3653. https://doi.org/10.1103/PhysRevB.20.3653

30. Ziman J.Z.M. Models of disorder: the theoretical physics of homogeneously disordered systems. (New York: Cambridge University Press, 1979).

31. Efros A. L. Physics and geometry of disorder. (Moscow: Nauka, 1982). [in Russian].

32. Charlaix E., Guyon E., Rivier N. A criterion for percolation thresold in a random array of plates. Solid. State Commun. 1984. 50(11): 999. https://doi.org/10.1016/0038-1098(84)90274-6

33. Mamunya Ye.P. Electrical and thermal conductivity of polymer composites with dispersed fillers. Ukrainian Chemistry Journal. 2000. 66(3): 55. [in Ukrainian].

34. Quivy A., Deltour R., Jasen A.G., Wyder P. Transport phenomena in polymer-graphite composite materials. Phys. Rev. B. 1989. 39(2): 1026. https://doi.org/10.1103/PhysRevB.39.1026

35. Balberg I., Binenbaum N., Bozovsky S. Anisotropic percolation in carbon black – polyvinylchloride composites. Solid. State Commun. 1983. 47(12): 989. https://doi.org/10.1016/0038-1098(83)90984-5

36. Bocchini S., Frache A., Camino G., Claes M. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur. Polym. J. 2007. 43(8): 3222. https://doi.org/10.1016/j.eurpolymj.2007.05.012

37. Tryfonov S.A., Sosnov E.A, Malygin A.A. Chemical transformations and thermo-oxidative resistance of polyethylene with a phosphorus – and anadyomene nanostructures on a surface. Izvestia Russian State Pedagogical A.I. Herzen Institute. 2005. 5(13): 219. [in Russian].

38. Sokolov Y.A., Shubanov S.M., Kandyrin L.B., Kalugin E.V. Polymer nanocomposites. Structures. Properties. Plastics. 2009. 3: 18.




DOI: https://doi.org/10.15407/hftp08.02.107

Copyright (©) 2017 Yu. I. Sementsov, S. N. Makhno, S. V. Zhuravsky, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.