Chemistry, Physics and Technology of Surface, 2018, 9 (1), 80-91.

Sorption performance of ethylene glycol dimethacrylate and methacrylic acid copolymers with different cross-link ratio towards rare earth elements



DOI: https://doi.org/10.15407/hftp09.01.080

Z. Yu. Bunina, K. Yu. Bryleva, O. I. Yurchenko, K. M. Belikov

Abstract


Sorption materials for rare earth elements based on ethylene glycol dimethacrylate and methacrylic acid copolymers with different cross-link ratio have been synthesized by ion-imprinting method. Two approaches of ion-imprinted polymers elaboration – chemical immobilization and trapping – have been applied. The obtained materials have been characterized via scanning electron microscopy and IR-spectroscopy. The synthesized polymers exist as aggregates of plate-like particles with slit-shaped pores. The specific surface area of obtained sorbents varies from 109 to 350 m2/g. Sorption performance of synthesized polymers towards rare earth ions as well as its dependence on cross-link ratio and ion-imprinting version has been investigated. The sorption materials under study exhibit best sorption efficiency towards rare earth elements in solutions with pH 6. The maximum sorption capacity of the obtained sorbents is around 0.3 mmol/g. According to these results, imprinted polymer with cross-link ratio 80 % synthesized via trapping approach is characterized by the highest distribution coefficient values. The observed tetrad effect for rare earth elements adsorption reflects the chemical nature of adsorption process on the synthesized materials.


Keywords


rare earth elements; gadolinium; adsorption; polymeric sorbents; ion-imprinting; tetrad effect

Full Text:

PDF (Русский)

References


1. Haxel G.B., Hedrick J.B., Orris G.J. Rare Earth Elements: critical resources for high technology. (Reston, VA: U.S. Geological Survey, 2002).

2. Freslon N., Bayon G., Birot D., Bollinger C., Barrat J.A. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)2 co-precipitation. Talanta. 2011. 85(1): 582.  https://doi.org/10.1016/j.talanta.2011.04.023

3. Hatje V., Bruland K.W., Flegal A.R. Determination of rare earth elements after preconcentration using NOBIAS-chelate PA-1®resin: Method development and application in the San Francisco Bay plume. Mar. Chem. 2014. 160: 34. https://doi.org/10.1016/j.marchem.2014.01.006

4. Xie F., Zhang T.A., Dreisinger D., Doyle F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014. 56: 10. https://doi.org/10.1016/j.mineng.2013.10.021

5. Anastopoulos I., Bhatnagar A., Lima E.C. Adsorption of rare earth metals: A review of recent literature. J. Mol. Liq. 2016. 221: 954. https://doi.org/10.1016/j.molliq.2016.06.076

6. Haupt K., Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000. 100(7): 2495. https://doi.org/10.1021/cr990099w

7. Branger C., Meouche W., Margaillan A. Recent advances on ion-imprinted polymers. React. Funct. Polym. 2013. 73(6): 859. https://doi.org/10.1016/j.reactfunctpolym.2013.03.021

8. Fain V.Ya. 9,10-Antraquinones and their use. (Moscow: Tsentr fotokhimii, 1999). [in Russian].

9. Rinehart R.W. Spectrophotometric determination of some rare earths and yttrium with Alizarin red S. Anal. Chem. 1954. 26(11): 1820. https://doi.org/10.1021/ac60095a039

10. Sing K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985. 57(4): 603. https://doi.org/10.1351/pac198557040603

11. Parfitt G.D., Rochester C.H. Adsorption from solution at the solid/liquid interface. (San Diego: Academic press, 1983).

12. Stumm W. Chemistry of the solid-water interface. (New York: John Wiley & Sons, 1992).

13. Kawabe I. Lanthanide tetrad effect in the Ln3+ ionic radii and refined spin-pairing energy theory. Geochem. J. 1992. 26(6): 309. https://doi.org/10.2343/geochemj.26.309

14. Peppard D.F., Mason G.W., Lewey S. A tetrad effect in the liquid-liquid extraction ordering of lanthanides(III). J. Inorg. Nucl. Chem. 1969. 31(7): 2271. https://doi.org/10.1016/0022-1902(69)90044-X

15. Majdan M., Gladysz-Plaska A., Pikus S., Sternik D.,Maryuk O., Zieba E., Sadowski P. Tetrad effect in the distribution constants of the lanthanides in their adsorption on the zeolite A. J. Mol. Str. 2004. 702: 95. https://doi.org/10.1016/j.molstruc.2004.06.016

16. Kawabe I., Ohta A., Ishii S., Tokumura M., Miyauchi K. REE partitioning between Fe-Mn oxyhydroxide precipitates and weakly acid NaCl solutions: Convex tetrad effect and fractionation of Y and Sc from heavy lanthanides. Geochem. J. 1999. 33(3): 167. https://doi.org/10.2343/geochemj.33.167

17. Monecke T., Kempe U., Monecke J., Sala M., Wolf D. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from graniterelated rare metal deposits. Geochim. Cosmochim. Acta. 2002. 66(7): 1185. https://doi.org/10.1016/S0016-7037(01)00849-3

18. Coppin F., Berger G., Bauer A., Castet S., Loubet M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002. 182(1): 57. https://doi.org/10.1016/S0009-2541(01)00283-2

19. Takahashi Y., Tada A., Shimizu H. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions. Anal. Sci. 2004. 20(9): 1301. https://doi.org/10.2116/analsci.20.1301

20. Wan Y., Liu C. The effect of humic acid on the adsorption of REEs on kaolin. Colloids Surf. A. 2006. 290(1–3): 112. https://doi.org/10.1016/j.colsurfa.2006.05.010

21. Tertre E., Hofmann A., Berger G. Rare earth element sorption by basaltic rock: Experimental data and modeling results using the "Generalised Composite approach". Geochim. Cosmochim. Acta. 2008. 72(4): 1043. https://doi.org/10.1016/j.gca.2007.12.015

22. Cormack P.A.G., Elorza A.Z. Molecularly imprinted polymers: Synthesis and characterization. J. Chromatogr. B. 2004. 804(1): 173. https://doi.org/10.1016/j.jchromb.2004.02.013




DOI: https://doi.org/10.15407/hftp09.01.080

Copyright (©) 2018 Z. Yu. Bunina, K. Yu. Bryleva, O. I. Yurchenko, K. M. Belikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.