Chemistry, Physics and Technology of Surface, 2018, 9 (2), 134-144.

Study of glucose hydrogenolysis over Cu-oxides



DOI: https://doi.org/10.15407/hftp09.02.134

E. M. Sharanda, S. I. Levytska, S. V. Prudius, A. M. Mylin, V. V. Brei

Abstract


The investigation deals with search of effective catalysts of propylene glycol obtaining from glucose as renewable raw material. The hydrogenolysis of 20 % aqueous glucose solution in a flow reactor over copper oxide catalysts at 120–220 °C and 4.0 MPa has been studied. It has been found that Сu/MgO-ZrO2 and   Cu-СаО-Cr2О3/Аl2O3 catalysts provide 65–66 % yield of C2-C3 polyols at a 90 % glucose conversion at 180 °C. The maximum selectivity for propylene glycol (64 %) is achieved over Сu/MgO-ZrO2 catalyst where copper is supported on high-basic (H£+27.0) MgO-ZrO2 mixed oxide. The scheme of glucose hydrogenolysis is discussed: the opening of pyranose ring – isomerization of fructose - C3-C4 decondensation – glycerol dehydration – hydrogenation of pyruvic aldehyde to propylene glycol.


Keywords


glucose; hydrogenolysis; Cu-oxide catalysts; propylene glycol; ethylene glycol

Full Text:

PDF (Українська)

References


1. Kukhar V.P. Biomass – potential feedstock for chemical industry. Catalysis and Petrochemistry. 2007. 15: 1. [in Ukrainian].

2. Zhang X., Wilson K., Lee A.F. Heterogeneously Catalyzed Hydrothermal Processing of C5−C6 Sugars. Chem. Rev. 2016. 116(19): 12328. https://doi.org/10.1021/acs.chemrev.6b00311

3. Kirk Othmer. Encyclopedia of Chemical Technology. 4-th edition. 12: 353.

4. Zhang J., Yang X., Hou B., Wang A., Li Z., Wang H., Zhang T. Comparison of cellobiose and glucose transformation to ethylene glycol. Chin. J. Catal. 2014. 35(11): 1811. https://doi.org/10.1016/S1872-2067(14)60151-0

5. Hirano Y., Sagata K., Kita Y. Selective transformation of glucose into propylene glycol on Ru/C catalysts combined with ZnO under low hydrogen pressures. Appl. Catal. A. 2015. 502: 1. https://doi.org/10.1016/j.apcata.2015.05.008

6. Liang D., Liu C., Deng S., Zhu Y., Lv C. Aqueous phase hydrogenolysis of glucose to 1,2-propanediol over copper catalysts supported by sulfated spherical carbon. Catal. Commun. 2014. 54: 108. https://doi.org/10.1016/j.catcom.2014.05.027

7. Liu C., Zhang C., Liu K., Wang Y., Fan G., Sun S., Xu J., Zhu Y., Li Y. Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: A comparative study of active metals. Biomass Bioenergy. 2015. 72: 189. https://doi.org/10.1016/j.biombioe.2014.11.005

8. Xiao Z., Jin S., Sha G., Williams C.T., Changhai Liang C. Two-Step Conversion of Biomass-Derived Glucose with High Concentration over Cu−Cr Catalysts. Ind. Eng. Chem. Res. 2014. 53(21): 8735. https://doi.org/10.1021/ie5012189

9. Levytska S.I., Shistka D.V., Brei V.V. Ethanolysis of rapeseed oil on MgO-ZrO2 catalyst in a participation of n-butylamine. Catalysis and Petrochemistry. 2012. 21: 35. [in Russian].

10. Belikov V.G., Vergeychik E.N., Godyatskiy V.E. Laboratory work in pharmaceutical chemistry. (Moskow: Vyisshaya shkola, 1989). [in Russian].

11. Sharanda M.E., Levytska S.I., Brei V.V. Conversion of sorbitol to propylene glycol over Cu-containing oxides. Catalysis and Petrochemistry. 2015. 24: 18. [in Ukrainian].

12. Liu C., Wang Y., Chu H., Qiu M., Niu L., Bai G. Continuous Dehydrogenation of n-Pentanol over a Cr Modified Cu/γ-Al2O3-La2O3 Catalyst. Chin. J. Chem. 2014. XX: 1.

13. Sharanda M.E., Sontsev V.M., Prudius S.V., Inshina E.I., Brei V.V. Transformation of glycerol into 1,2-propanediol over the bifunctional catalysts. Him. Fiz. Tehnol. Poverhni. 2012. 3(1): 61. [in Russian].

14. Wiebe R., Gaddy V.L., Heins C., Solubility of Hydrogen in Water at 250c from 25 to 1000 Atmospheres. Ind. Eng. Chem. 1932. 24(7): 823. https://doi.org/10.1021/ie50271a024

15. Nenitescu C.D. Organic chemistry. V. 2. (Moskow: Inostr. Lit., 1963). [in Russian].

16. Brovetto M., Gamenara D., Mendez P., Seoane G.A. C-C bond-forming liases in organic synthesis. Chem. Rev. 2011. 111(7): 4346. https://doi.org/10.1021/cr100299p

17. Barclay T. Ginic-Markovic M., Johnston M.R., Cooper P., Petrovsky N. Observation of the keto tautomer of D-fructose in D2O using 1H NMR spectroscopy. Carbohydr. Res. 2012. 347(1): 136. https://doi.org/10.1016/j.carres.2011.11.003

18. Akiyama M., Sato S., Takahashi R., Inui K., Yokota M. Dehydration–hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Appl. Catal. A. 2009. 371(1–2): 60. https://doi.org/10.1016/j.apcata.2009.09.029

19. Wawrzetz A., Peng B., Hrabar A., Jentys A., Lemonidou A.A., Lercher J.A. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. J. Catal. 2010. 269(2): 411. https://doi.org/10.1016/j.jcat.2009.11.027

20. Schidt S., Tanielyan S.K., Martin N., Alvez G., Augustine R.L. Selective conversion of glycerol to propylene glycol over fixed bed Raney Cu catalysts. Top. Catal. 2010. 53(15–18): 1214. https://doi.org/10.1007/s11244-010-9565-x




DOI: https://doi.org/10.15407/hftp09.02.134

Copyright (©) 2018 E. M. Sharanda, S. I. Levytska, S. V. Prudius, A. M. Mylin, V. V. Brei

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.