Chemistry, Physics and Technology of Surface, 2020, 11 (1), 144-159.

A short review on regulation of stability of aqueous suspensions of carbon nanotubes



DOI: https://doi.org/10.15407/hftp11.01.144

M. V. Manilo, N. I. Lebovka, S. Barany

Abstract


This review analyses the authors’ recent and related works on electrokinetic properties and colloidal stability of aqueous suspension of multiwalled carbon nanotubes (CNTs) in the presence of surfactants and nanoparticles. Selected adsorptive properties of carbon nanotubes are also considered.

The applicability of classical theories of electrophoresis for description of electrophoretic mobility of carbon nanotubes is discussed. Examples on the ζ-potential of CNTs in aqueous suspensions as a function of pH and concentration of electrolytes (KCl, CaCl2 and AlCl3) are given. Additions of cetyltrimethylammonium bromide (CTAB) cationic surfactant below the critical micelle formation concentration (CMC) values give a reduction and then an overcharging the CNT surface because of accumulation of the surfactant ions in the Stern layer. At concentrations above CMC the substantial drop in ζ is observed. It is due to the shift of the shear plane toward solution as a result of formation of hemi-micelles on the surface. An increase in the mass ratio of artificial mineral Laponite (Lap) in suspension (X) from 0 to 0.4 results in a monotonic decrease of the ζ-potential of CNT + Lap hybrids with reaching its plateau value ≈ –32 mV at X ≥ 0.4 that corresponds to the ζ of “pure” Lap platelets. This evidences the high surface coverage of nanotubes surface with Lap at X ≥ 0.4.

The major methods to improve the dispersibility of carbon nanotubes, their colloidal stability and adsorptive properties are briefly discussed, namely: stabilization in mixtures of water and organic solvents; functionalization by chemical treatment; stabilization by additives of surfactants or polymers and hybridization by addition of supplementary stabilizing nanoparticles. CNTs can be significantly debundled in “good” solvents, such as               1-cyclohexyl-2-pyrrolidone, N,N-dimethylformamide, or N-methyl-2-pyrrolidone. It is demonstrated that the dispersibility of CNTs is a complex function of the type of surfactant, its concentration and the surfactant/CNTs ratio. The optimum concentration of CTAB to achieve homogeneous aqueous dispersion of carbon nanotubes was identified to be near the CMC. Additions of CTAB significantly modify the size distribution of CNTs and a sharp transition from small primary aggregates to large secondary aggregates at concentrations above CMC is observed. At optimal concentration of Lap the nanotube particles get well stabilized, and a stepwise increase of sedimentation stability is observed.

We have shown also that CNT + Lap hybrids can be effectively used for removal of methylene blue dye from aqueous systems. The kinetics and mechanisms of adsorption are elucidated.


Keywords


carbon nanotubes; aqueous suspension; colloidal stability; zeta potential; surfactants; hybrids

Full Text:

PDF

References


1. Vakhrushev A.V., Kodolov V.I., Haghi A.K., Ameta S.C. Carbon Nanotubes and Nanoparticles: Current and Potential Applications. (Apple Academic Press, 2019). https://doi.org/10.1201/9780429463877

2. Al-Hamadani Y.A.J., Chu K.H., Son A., Heo J., Her N., Jang M., Park Ch.M., Yoon Y.Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Sep. Purif. Technol. 2015. 156(2): 861. https://doi.org/10.1016/j.seppur.2015.11.002

3. Hunter R.J. Zeta potential in colloid science: principles and applications. (Academic press, 2013).

4. Besra L., Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007. 52(1): 1. https://doi.org/10.1016/j.pmatsci.2006.07.001

5. Kunz W. Specific Ion Effects, Evidences. In: Encyclopedia of Applied Electrochemistry. (Springer, 2014). P. 2045. https://doi.org/10.1007/978-1-4419-6996-5_26

6. Lyklema J. Simple Hofmeister series. Chem. Phys. Lett. 2009. 467(4-6): 217. https://doi.org/10.1016/j.cplett.2008.11.013

7. Kim J.Y., Yoon B.J. Electrophoresis Theory of Nonspherical Particles. In: Interfacial Electrokinetics and Electrophoresis (Surfactant Science). (Marcel Dekker, Inc., 2002). P. 173.

8. Dukhin S.S. Non-equilibrium electric surface phenomena. Adv. Colloid Interface Sci. 1993. 44: 1. https://doi.org/10.1016/0001-8686(93)80021-3

9. Chen Sh., Hu Sh., Smith E.F., Ruenraroengsak P., Thorley A.J., Menzel R., Goode, A.E. Ryan M.P., Tetley T.D., Porter A.E., Shaffer M.S.P. Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application. Biomaterials. 2014. 35(17): 4729. https://doi.org/10.1016/j.biomaterials.2014.02.002

10. Manilo M., Lebovka N., Barany S. Characterization of the electric double layers of multi-walled carbon nanotubes, laponite and nanotube+laponite hybrids in aqueous suspensions. Colloids Surf. A. 2014. 462: 211. https://doi.org/10.1016/j.colsurfa.2014.09.006

11. Barany S. Complex electrosurface investigations of dispersed microphases. Adv. Colloid Interface Sci. 1998. 75(1): 45. https://doi.org/10.1016/S0001-8686(97)00043-2

12. Hughes J.M., Aherne D., Bergin Sh.D., O'Neill A., Streich P.V., Hamilton J.P., Coleman J.N. Using solution thermodynamics to describe the dispersion of rod-like solutes: application to dispersions of carbon nanotubes in organic solvents. Nanotechnology. 2012. 23(26): 265604. https://doi.org/10.1088/0957-4484/23/26/265604

13. Oh W.-C., Ko W.-B., Zhang F.-J. The functionalization and preparation methods of carbon nanotube-polymer composites: A review. Elastomers and Composites. 2010. 45: 80.

14. Lisunova M.O., Lebovka N.I., Melezhyk O.V., Boiko Y.P. Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. J. Colloid Interface Sci. 2006. 299: 740. https://doi.org/10.1016/j.jcis.2006.03.012

15. Clark M.D., Subramanian S., Krishnamoorti R. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci. 2011. 354(1): 144. https://doi.org/10.1016/j.jcis.2010.10.027

16. Loginov M., Lebovka N., Vorobiev E. Laponite assisted dispersion of carbon nanotubes in water. J. Colloid Interface Sci. 2012. 365(1): 127. https://doi.org/10.1016/j.jcis.2011.09.025

17. Hansen C.M. Hansen solubility parameters-A user's handbook. (Boca Raton, FL: CRC Press, 2007). https://doi.org/10.1201/9781420006834

18. Deriabina O., Lebovka N., Bulavin L., Goncharuk A. Regulation of dispersion of carbon nanotubes in binary water+ 1-Cyclohexyl-2-pyrrolidone mixtures. Physica E Low-dimensional Systems and Nanostructures. 2014. 59: 150. https://doi.org/10.1016/j.physe.2014.01.017

19. Lou A., Pethica B.A., Somasundaran P., Yu X. Phase behavior of N-Alkyl-2-pyrrolidones in aqueous and nonaqueous systems and the effect of additives. J. Colloid Interface Sci. 2002. 256(1): 190. https://doi.org/10.1006/jcis.2002.8223

20. Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008. 46(6): 833. https://doi.org/10.1016/j.carbon.2008.02.012

21. Barany S., Kartel N., Meszaros R. Electrokinetic potential of multi-walled carbon nanotube in aqeous suspension of electrolytes and surfactants. Colloid J. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020

22. Brady-Estévez A.S., Schnoor M.H., Kang S., Elimelech M. SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation. Langmuir. 2010. 26(24): 19153. https://doi.org/10.1021/la103776y

23. Thai O.Y., Latif A.A., Sharif Z.Sh.H., Huat T.S. A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 2010. 27(2): 227. https://doi.org/10.1590/S0104-66322010000200002

24. Meng S.H., Yan J., Li H.G., Du S.G. The Effect of Surfactants on the Dispersion of Carbon Nanotubes in Water. Adv. Mater. Res. 2015. 1081: 142. https://doi.org/10.4028/www.scientific.net/AMR.1081.142

25. Lin L., Peng H., Ding G. Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng. 2015. 91: 163. https://doi.org/10.1016/j.applthermaleng.2015.08.011

26. Devre R.D., Budhlall B.M., Barry C.F. Enhancing the Colloidal Stability and Electrical Conductivity of Single-Walled Carbon Nanotubes Dispersed in Water. Macromol. Chem. Phys. 2016. 217(5): 683. https://doi.org/10.1002/macp.201500408

27. Xiao Q., Wang P.-H., Ji L.-L. Dispersion of carbon nanotubes in aqueous solution with cationic surfactant CTAB. J. Inorg. Mater. 2007. 22(6): 1122.

28. De la Cruz E.F., Zheng Y., Torres E., Li W. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. 2012. 7(4): 3577.

29. Manilo M.V., Lebovka N., Barany S. Combined effect of cetyltrimethylammonium bromide and laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. J. Mol. Liq. 2017. 235: 104. https://doi.org/10.1016/j.molliq.2017.01.090

30. Manilo M., Bohacs K., Lebovka N., Barany S. Impact of surfactant and clay platelets on electrokinetic potential and size distribution in carbon nanotubes aqueous suspensions. Colloids Surf. A. 2018. 544: 205. https://doi.org/10.1016/j.colsurfa.2018.02.030

31. Barany S., Gregory J. Flocculation of kaolin suspension by cationic polyelectrolites. Colloid J. 1996. 58(1): 13.

32. Shin J.-Y., Premkumar T., Geckeler K.E. Dispersion of Single-Walled Carbon Nanotubes by Using Surfactants: Are the Type and Concentration Important? Chem. Eur. J. 2008. 14(20): 6044. https://doi.org/10.1002/chem.200800357

33. Koganovskii A.M., Klimenko N.A. Physical and chemical basis of removing the surfactant from aqueous solution and waste water. (Kyiv: Naukova dumka, 1978).

34. Addo Ntim S., Mitra S. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. J. Colloid Interface Sci. 2012. 375(1): 154. https://doi.org/10.1016/j.jcis.2012.01.063

35. Purceno A.D., Teixeira A.P.C., Souza N.J.D., Fernandez-Outon L.E., Ardisson J.D., Lago R.M. Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol. J. Colloid Interface Sci. 2012. 379(1): 84. https://doi.org/10.1016/j.jcis.2012.04.018

36. Saleh T.A., Gupta V.K. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci. 2012. 371(1): 101. https://doi.org/10.1016/j.jcis.2011.12.038

37. Eder D. Carbon nanotube-inorganic hybrids. Chem. Rev. 2010. 110(3): 1348. https://doi.org/10.1021/cr800433k

38. Lebovka N., Lisetski L., Bulavin L. Organization of Nano-disks of Laponite® in Soft Colloidal Systems. In: Modern Problems of the Physics of Liquid Systems. (Springer, 2019). P. 137. https://doi.org/10.1007/978-3-030-21755-6_6

39. Savenko V., Bulavin L., Rawiso M., Loginov M. Sedimentation stability and aging of aqueous dispersions of Laponite in the presence of cetyltrimethylammonium bromide. Phys. Rev. E. 2013. 88(5): 52301. https://doi.org/10.1103/PhysRevE.88.052301

40. Manilo M., Lebovka N., Bárány S. Electrokinetic study of impact of laponite platelets on stabilization of carbon nanotubes in aqueous suspensions. Mater. Sci. Eng. 2015. 40: 96.

41. Manilo M.V., Lebovka N.I., Barany S. Aggregation in hydrid suspension filled by mixture of multi-walled carbon nanotubes and nanoplatelets of laponite. Mater. Sci. Eng. 2015. 40(1): 105.

42. Loginov M., Lebovka N., Vorobiev E. Hybrid multiwalled carbon nanotube ? Laponite sorbent for removal of methylene blue from aqueous solutions. J. Colloid Interface Sci. 2014. 431: 241. https://doi.org/10.1016/j.jcis.2014.06.057

43. Manilo M.V., Lebovka N.I., Barany S. Stability of multi-walled carbon nanotube + laponite hybrid particles in aqueous suspensions. Colloids Surf. A. 2015. 481: 199. https://doi.org/10.1016/j.colsurfa.2015.04.052

44. Manilo M., Lebovka N., Barany S. Mechanism of Methylene Blue adsorption on hybrid laponite-multi-walled carbon nanotube particles. J. Environ Sci. 2016. 42: 134. https://doi.org/10.1016/j.jes.2015.06.011

45. Lebovka N. Aggregation of charged colloidal particles. In: Polyelectrolyte complexes in the dispersed and solid state: principles and applications. (Springer, 2014). P. 1.

46. Peigney A., Laurent C., Flahaut E., Bacsa R.R., Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001. 39(4): 507. https://doi.org/10.1016/S0008-6223(00)00155-X

47. Laurent C., Flahaut E., Peigney A. The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon. 2010. 48(10): 2994. https://doi.org/10.1016/j.carbon.2010.04.010

48. Fiyadh S.S., AlSaadi M.A., Jaafar W.Z., Al Omar M.Kh., Fayaed S.S., Mohd N.S., Hin L.S., El-Shafie A. Review on heavy metal adsorption processes by carbon nanotubes. J. Cleaner Prod. 2019. 230: 783. https://doi.org/10.1016/j.jclepro.2019.05.154

49. Lian F., Chang C., Du Y., Zhu L., Xing B., Liu Ch. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes. J. Environ Sci. 2012. 24(9): 1549. https://doi.org/10.1016/S1001-0742(11)60984-4

50. Kerkez Ö., Bayazit S.S. Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions. J. Nanopart. Res. 2014. 16: 2431. https://doi.org/10.1007/s11051-014-2431-1

51. Shahryari Z., Goharrizi A.S., Azadi M. Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. International Journal of Water Resources and Environmental Engineering. 2010. 2(2): 16.

52. Szlachta M., Wójtowicz P. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes. Water Sci. Technol. 2013. 68(10): 2240. https://doi.org/10.2166/wst.2013.487

53. Yan Y., Zhang M., Gong K., Su L., Guo Zh., Mao L. Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem. Mater. 2005. 17(13): 3457. https://doi.org/10.1021/cm0504182

54. Li Y., Du Q., Liu T., Peng X., Wang J., Sun J., Wang Y., Wu Sh., Wang Z., Xia Y., Xia L. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 2013. 91(2): 361. https://doi.org/10.1016/j.cherd.2012.07.007

55. Ma J., Yu F., Zhou L., Jin L., Yang M., Luan J., Tang Y., Fan H., Yuan Zh. Enhanced Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution by Alkali-Activated Multiwalled Carbon Nanotubes. ACS Appl. Mater. Interfaces. 2012. 4(11): 5749. https://doi.org/10.1021/am301053m

56. Norzilah A.H., Fakhru'l-Razi A., Choong T.S.Y., Chuah A.L. Surface Modification Effects on CNTs Adsorption of Methylene Blue and Phenol. J. Nanomater. 2011. 2011: 495676. https://doi.org/10.1155/2011/495676

57. Qu S., Huang F., Yu S., Chen G., Kong J. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 2008. 160(2-3): 634. https://doi.org/10.1016/j.jhazmat.2008.03.037

58. Madrakiana T., Afkhami A., Ahmadi M., Bagheri H. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 2011. 196: 109. https://doi.org/10.1016/j.jhazmat.2011.08.078

59. Patent WO2013127938 A1. Loginov M., Lebovka M., Vorobiev E. Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees. 2013.




DOI: https://doi.org/10.15407/hftp11.01.144

Copyright (©) 2020 M. V. Manilo, N. I. Lebovka, S. Barany

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.