Chemistry, Physics and Technology of Surface, 2020, 11 (2), 201-214.

The influence of surfactants on biogenic synthesis of silver nanoparticles in lactic acid bacteria



DOI: https://doi.org/10.15407/hftp11.02.201

V. I. Podolska, O. Yu. Voitenko, N. I. Gryshchenko, O. G. Savkin, L. M. Yakubenko

Abstract


The results are presented of a study on spectral characteristics, electron microscopy data and antibacterial properties of Lactobacillus plantarum cell matrices filled with biologically synthesized in the presence of surfactants (S) silver nanoparticles (bioAgNP). The dependences of spectral characteristic of cell suspension of lactic acid bacteria L.plantarum with synthesized bioAgNP on S concentration were analyzed, namely: cationic two quaternary ammonium salt (CS) aethonium and anionic sodium decyl phosphate (AS). To control the process of bioAgNP production in microorganism cells, the method of spectroscopy in ultraviolet and visible regions was used. The antibacterial properties of modified L. plantarum cells dependent on synthesis condition and their composition were testified by disco diffusion method. The results are presented of electron-microscopy investigation of treated with concentrated sulfuric acid bionanocomposite material.

It is shown that addition at the synthesis of an ionogenic S to the precursor solution affects structural and size descriptions of biogenic silver formed in L. plantarum cells. Since a concentration more then the critical concentration of micelle formation, aethonium presence resulted in forming of two NPs fractions, namely: stabilized in a cell wall subcolloidal particles having absorption band at 380 nm and also aggregated particles having spectral shoulder at 440 nm. S addition promoted the red shift of absorption spectra dependent on CS concentration and medium pH, however not dependent on AS concentration. It is shown that antibacterial properties of modified with S nanobiocomposite materials mainly depend on the NPs content in lactic acid matrices and on their size. Joint application of bionanocomposite and aethonium preparation close to the critical micelle concentration allowed to rise their activity in relation to Gram(+)bacteria and, at the same time, to bring down on an order (from 1.0 to 0.1 %) the ordinary therapeutic dose of aethonium.


Keywords


nanosize silver; lactic acid bacteria; biogenic synthesis; surfactants

Full Text:

PDF (Українська)

References


1. Sintubin L., Windt W.D., Dick J., Mast J, van der Ha D., Verstraete W, Boon N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 2009. 84(4): 74. https://doi.org/10.1007/s00253-009-2032-6

2. Sintubin L., Verstraete W., Boon N. Biologically produced nanosilver: current state and perspectives. Biotechnol. Bioeng. 2012. 109(10): 2422. https://doi.org/10.1002/bit.24570

3. Podolska V.I., Voitenko O.Yu., Grishchenko N.I. Ulberg Z.R., Savkin G., Yakubenko L.N. Chemical-microbiological and biogenic formation of ultrafine silver in lactobacilli cells. Material Science of Nanostructures. 2014. (2): 53. [in Russian].

4. Podolska V.I., Voitenko O.Yu, Savkin O.G., Grishchenko N.I., Ulberg Z.R., Yakubenko L.M. Characterization of superdispersed silver particles precipitated in lactobacteria cells. Material Science of Nanostructures. 2014. (1): 64. [in Russian].

5. Voitenko O.Yu., Podolska V.I., Gryshchenko N.I., Ulberg Z.R., Yakubenko L.N. Antimicrobial activity of microorganisms and colloidal silver based on hybrid materials. Biotechnologia Acta. 2014. 7(1): 100. [in Ukrainian]. https://doi.org/10.15407/biotech7.01.100

6. Sleytr U.V., Messner P., Pum D., Sara M. Crystalline bacterial cell surface layers (S Layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed. 1999. 38(8):1034. https://doi.org/10.1002/(SICI)1521-3773(19990419)38:8<1034::AID-ANIE1034>3.0.CO;2-#

7. Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005. 15(10): 2346. https://doi.org/10.1088/0957-4484/16/10/059

8. Hatchett D.W., White H.S. Electrochemistry of sulfur adlayers on the low-index faces of silver. J. Phys. Chem. 1996. 100(23): 9854. https://doi.org/10.1021/jp953757z

9. Ajayan P.M., Marks L.D. Quasimelting and phases of small particles. Phys. Rev. Lett. 1988. 60(7): 585. https://doi.org/10.1103/PhysRevLett.60.585

10. Lok C.-N., Ho C.-M., Chen R., He Q.-Y., Yu W.-Y, Sun H. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007. 12(4): 527. https://doi.org/10.1007/s00775-007-0208-z

11. Patent RF 241943. Krutyakov Yu.A., Kudrinsky A.A., Lisichkin G.V., Vertelov G.K., Mazhuha A.G. Antibacterial preparation and the method for its production. 2011. [in Russian].

12. Patent RF 2480203. Krutyakov Yu.A., Kudrinsky A.A., Lisichkin G.V. Antimicrobial composition and the method for its production. 2013. [in Russian].

13. Pirog T.P., Konon A.D., Sofilkanich A.D., Iutiskaya G.A. Effect of the Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017 and Nocardia vaccinii K-8 surface-active substances on phytopathogenic bacteria. Prikladnaya biokhimiya i mikrobiologiya. 2013. 49(4): 364. [in Russian]. https://doi.org/10.1134/S000368381304011X

14. Savvin S.B., Chernova R.K., Shtykov S.N. Surface-active substances. (Moscow: Nauka, 1991). [in Russian].

15. Fomin P.A., Leikin Yu.A., Cherkasova T.A. Research of bactericidal ion-exchange sorbents. Uspekhi v khimii i khimicheskoy tekhnologii. 2008. 22(13(93)): 10. [in Russian].

16. Podolska V.I., Voitenko O.Yu., Ulberg Z.R., Yakubenko L.M., Grishchenko N.I., Ermakov V.N. Influence of pulse electric field on surface properties of lactic acid bacteria Lactobacillus plantarum and biogenic formation of ultradispersed silver. Him. Fiz. Tehnol. Poverhni. 2017. 8(2): 143. [in Ukrainian]. https://doi.org/10.15407/hftp08.02.143

17. Potehina N.V. Teichoic acid of actinomycetess and other gram-positive bacteria. Uspekhi biologicheskoy khimii. 2006. 46:22. [in Russian].

18. Kamneva N.N., Bykova O.S. Effect of micellar aetonium medium on spectral and protolytic properties of the indicator dyes. Visnyk Harkivskogo Natsionalnogo Universitetu. Seria "Himiia". 2014. (1123, Vyp. 23): 39. [in Russian].

19. Slipenyuk T.S., Slipenyuk O.T., Kobitovich O.M., Lyavynets O.S. Investigation of processes of dispersed phase structuring in polyvinyl chloride latex. Naukovyi Visnyk Tchernivetskogo Univesytetu. Himiia. 2011. (Vyp. 581): 84. [in Ukrainian].

20. Domracheva L.I., Simakova V.S. Reactions of pro- and eukaryotic microorganisms on action of synthetic surface-active substances (review). Teoreticheskaya i prikladnaya ekologiya. 2018. (1): 5. [in Russian].




DOI: https://doi.org/10.15407/hftp11.02.201

Copyright (©) 2020 V. I. Podolska, O. Yu. Voitenko, N. I. Gryshchenko, O. G. Savkin, L. M. Yakubenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.