Chemistry, Physics and Technology of Surface, 2020, 11 (2), 235-249.

Nanocomposites based on multicomponent polymer matrix and nanofiller densil: relaxation properties and morphology



DOI: https://doi.org/10.15407/hftp11.02.235

L. V. Karabanova, O. M. Bondaruk, E. F. Voronin

Abstract


The nanocomposites based on polyurethane (PU), poly(2-hydroxyethyl methacrylate) (PHEMA), and nanofiller densil are created. Dynamic mechanical properties, morphology by SEM and hydrophilicity of the materials are investigated. The dependence of the characteristics on the polymer matrix components content and amount of nanofiller is evaluated. It has been shown that the introduction of nanofiller into multicomponent polymer matrix with a small amount of second component, which is characterized by a low degree of polymer components segregation, leads to an increase in the modulus of elasticity of the materials. In such nanocomposites, there is a more free segmental motion in PHEMA, indicating the concentration of the nanofiller mainly in the PU’s nanodomains. When the nanofiller is introduced into the matrix with a significant degree of microphase separation, an increase in the elastic modulus is observed only at high amounts of nanofiller (10–15%), which plays the role of a compatibilizer. In the morphology investigation it has been shown that the matrix has a phase-separated structure. When 3–5 % of densyl is added to the matrix, a smoother, integrated structure appears. With the further increase of nanofiller amount up to 10–15 %, formation of nanofiller aggregates is observed, while aggregates become more densely packed with fraction of the nanofiller. The hydrophilicity of the created materials increases due tu introduction of both PHEMA and nanofiller densil, but nonmonotonic changes with amount of nanofiller occurs. Concentration dependence of water sorption is determined by the distribution of filler nanoparticles in the matrices, its aggregation at 10–15 % content, and by the formation of surface layers of polymer components of matrices, which can consist of polyurethane or of both polymer components of multicomponent polymer matrices. The introduction of nanofiller densyl leads to the increasing of the hydrophilisity of created materials and so to the increasing of their biocompatibility. Created nanocomposites could be effective as materials for bio-medical applications.


Keywords


nan. ocomposites; polyurethane; poly(2-hydroxyethyl methacrylate); densyl; dynamic-mechanical analysis; scanning electron microscopy; morphology; component segregation degree; microphase separation

Full Text:

PDF (Українська)

References


1. Karabanova L.V., Lloyd A.W., Mikhalovsky S.V. 3-D artificial nanodiamonds containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) polymer matrix. In: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. (Switzerland: Springer, 2015). P. 149-164. https://doi.org/10.1007/978-3-319-18543-9_9

2. Karabanova L.V., Gomza Yu.P., Nesin S.D. Bondaruk O.M., Voronin E.P., Nosach L.V. Nanocomposites based on multicomponent polymer matrices and nanofiller densil for biomedical application. In: Nanophysics, Nanophotonics, Surface Studies and Application. (Switzerland: Springer, 2016). P. 451-475. https://doi.org/10.1007/978-3-319-30737-4_38

3. Bershtein V.A., Gun'ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. Royal Society Chemistry Advances. 2013. 3(34): 14560. https://doi.org/10.1039/c3ra40295a

4. Karabanova L.V., GomzaYu.P., Nesin S.D., Bondaruk O.N., Geraschenko I.I., Voronin E.F., Nosach L.V., Zarko V.I., Pahlov E.M. Nano-size systems and nanomaterials: research in Ukraine. (Kyiv: Academperiodika, 2014). P. 724-730. [in Russian].

5. Peponi L., Puglia D., Torre L., Valentini I., Kenny J.M. Processing of nanostructured polymers and advanced polymer based nanocomposites. Mater. Sci. Eng. R: Rep. 2014. 85: 1. https://doi.org/10.1016/j.mser.2014.08.002

6. Shilov B.B., Karabanova L.V., David L., Boiteux G., Seytre G., Gomza Yu.P., Nesin S.D., Sergeeva L.M., Lutsyk E.D., Svyatina A.V. Features of the heterogeneous structure of the semi-interpenetrating polymer networks based on polyurethane and polyhydrohyethyl methacrylate. Polymer J. 2005. 27(4): 255. [in Russian].

7. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A., Vylegzhanina M.E. 3-D diamond-containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPNs: composition - nanostructure-segmental dynamics - elastic properties relationships. Journal of Polymer Science Part B. Polymer Physics. 2008. 46(16): 1696. https://doi.org/10.1002/polb.21506

8. Lipatov Yu.S. Interphase phenomena in polymers. (Kyiv: Naukova Dumka, 1980). [in Russian].

9. Karabanova L.V. Doctoral (Chem.) Thesis. (Kyiv, 2001). [in Russian].

10. Karabanova L.V., Lloyd A., Mikhalovsky S. Helias M., Philips G.P., Rose S., Mikhalovska L., Boiteux G., Sergeeva L.M., Lutsyk E.D., Udovichenko A. Polyurethane/poly(2-hydroxyethyl methacrylate) semi-IPN for biomedical materials applications. J. Mater. Sci. - Mater. Med. 2006. 17(12): 1283. https://doi.org/10.1007/s10856-006-0603-y

11. Karabanova L.V., Mikhalovsky S.V., Lloyd A.W. Gradient semi-interpenetrating polymer networks based on polyurethane and poly(2-hydroxy ethylmethacrylate) for biomedical application. J. Mater. Chem. 2012. 22(16): 7919. https://doi.org/10.1039/c2jm16176a

12. Bershtein V.A., Pissis P., Sukhanova T.E., Karabanova L.V., Yakushev P.N., Bondaruk O.M., Klonos P., Spyratou E., Vylegzhanina M.E., Voronin E.F. Biocompatible nanocomposites based on semi-interpenetrating polymer networks and nanosilica modified by bioactive aminoacid tryptophan: morphology, dynamics and properties. Eur. Polym. J. 2017. 92: 150. https://doi.org/10.1016/j.eurpolymj.2017.04.038

13. Patent UA 97613. Karabanova L.V., Gerashenko I.I., Voronin E.P., Bondaruk O.M. Nanocomposite material for biomedical applications. 2015.

14. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym. Int. 2004. 53(12): 2051. https://doi.org/10.1002/pi.1627

15. Gun'ko V.M., Voronin E.F., Nosach L.V., Pakhlov E.M., Guzenko N.V., Leboda R., Skubiszewska-Zięba. Adsorption and migration of poly(vinyl pyrrolidone) at a surface of fumed silica. Adsorpt. Sci. Technol. 2006. 24(2): 143. https://doi.org/10.1260/026361706778529173

16. Karabanova L.V., Boiteux G., Seytre G., Stevenson I., Lloyd A., Mikhalovsky S., Helias M., Sergeeva L.M., Lutsyk E.D., Svyatyna A.V. Phase Separation in the Polyurethane/Poly(hydroxyethylmethacrylate) Semi-Interpenetrating Polymer Networks synthesized by different ways. Polym. Eng. Sci. 2008. 48(3): 588. https://doi.org/10.1002/pen.20965

17. Bershtein V.A., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M, Lutsyk E.D., Svyatyna A., Vylegzhanina M.E. Peculiar Dynamics and Elastic Properties of Hybrid semi-Interpenetrating Polymer Network-3-D Diamond Nanocomposites. Polymer. 2008. 49: 836. https://doi.org/10.1016/j.polymer.2008.01.002

18. Nilsen L. Mechanical properties of polymers and polymer compositions. (Moscow: Khimiya, 1978). [in Russian].

19. Karabanova L.V. Phase processes in the semi-IPN of sequential curing. In: Phase processes in heterogeneous polymer systems. (Kyiv: Naukova Dumka, 2012). [in Russian].

20. Lipatov Yu.S., Rosovitsky V.F. Physical chemistry of multicomponent polymer systems. V. 2. (Kyiv: Naukova Dumka, 1986). [in Russian].

21. Klonos P., Chatzidogiannaki V., Roumpos K., Spyratou E., Georgiopoulos P., Kontou E., Pissis P., Gomza Yu., Nesin S., Bondaruk O., Karabanova L. Structure-properties investigations in hydrophilic nanocomposites based on polyurethane/poly(2-hydroxyethyl methacrylate) semi-IPNs and nanofiller densil for biomedical application. J. Appl. Polym. Sci. 2016. 133(11): 2635. https://doi.org/10.1002/app.43122




DOI: https://doi.org/10.15407/hftp11.02.235

Copyright (©) 2020 L. V. Karabanova, O. M. Bondaruk, E. F. Voronin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.