Chemistry, Physics and Technology of Surface, 2020, 11 (3), 395-404.

Motion reversal modeling for a Brownian particle affected by nonequilibrium fluctuations



DOI: https://doi.org/10.15407/hftp11.03.395

A. D. Terets, T. Ye. Korochkova, V. M. Rozenbaum, V. A. Mashira, I. V. Shapochkina, A. N. Furs, M. I. Ikim, V. F. Gromov

Abstract


A relevant and important question in studying the transport of nanoparticles is the possibility and methods of controlling the generated currents. One of the possibilities is to use the ratchet effect, i.e. the occurrence of directed motion as a result of the influence of nonequilibrium fluctuations of various nature when one or more symmetries in the system are broken. To implement the ratchet effect, a deterministic dichotomous process is often used, which can be modeled by two alternating states that have constant characteristics. Usually, the main factor determining the direction of motion of a Brownian motor is the spatial asymmetry of the potential profile. In certain cases, for example, for a double-well potential profile, one can relatively easily investigate the conditions for reversal of the direction of motor motion. In this paper, using the idea of Parrondo’s paradox games consisting of alternating strategies of a game that provides an average winning, we simulated the ratchet effect for a diffusion hopping model of an adiabatic Brownian motor with an asymmetric double-well on-off potential.  The conditions affecting the direction of nanoparticle motion are investigated, the possibility of temperature control of the motion direction is shown, and an estimate of the generated average velocity of the Brownian motor in the adiabatic approximation is obtained. The motor functioning is simulated in terms of the game theory and the average trajectories of capital accumulation are obtained, which correspond to the trajectories of the average displacement of a Brownian particle due to the ratchet effect. For the chosen model, it is shown that, at low temperatures, a particle moves to the right in accordance with the simplest on-off ratchet model, while, at high temperatures, the motion reverses. A comparison of the simulation results with the values of the ratchet velocity obtained within the adiabatic approximation shows that this approximation becomes valid at sufficiently large values of the lifetimes of the states of the dichotomous process, and it turns out to be much more accurate in the high-temperature region than in the low-temperature one.


Keywords


diffusion transport; Brownian motors; ratchet effect; movement reversal; dichotomous process; Parrondo’s paradox games

Full Text:

PDF (Русский)

References


1. Gulyaev Yu.V., Bugaev A.S., Rozenbaum V.M., Trakhtenberg L.I. Nanotransport controlled by means of the ratchet effect. Physics-Uspekhi. 2020. 63: 311. [in Russian]. https://doi.org/10.3367/UFNe.2019.05.038570

2. Howard J. Mechanics of Motor Proteins and the Cytoskeleton. (Sunderland, MA: Sinauer Associates, 2001).

3. Reimann P. Brownian Motors: Noisy Transport far from Equilibrium. Phys. Rep. 2002. 361(2-4): 57. https://doi.org/10.1016/S0370-1573(01)00081-3

4. Bressloff P.C., Newby J.M. Stochastic models of intracellular transport. Rev. Mod. Phys. 2013. 85:135. https://doi.org/10.1103/RevModPhys.85.135

5. Chowdhury D. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist's perspective. Phys. Rep. 2013. 529: 1. https://doi.org/10.1016/j.physrep.2013.03.005

6. Kolomeisky A.B. Motor Proteins and Molecular Motors. (Boca Raton FL: CRS Press, 2015). https://doi.org/10.1201/b18426

7. Hoffmann P.M. How molecular motors extract order from chaos (a key issues review) Rep. Prog. Phys. 2016. 79(3): 032601. https://doi.org/10.1088/0034-4885/79/3/032601

8. Cubero D., Renzoni F. Brownian Ratchets: From Statistical Physics to Bio and Nanomotors. (Cambridge, UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781107478206

9. Hänggi P., Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009. 81(1): 387. https://doi.org/10.1103/RevModPhys.81.387

10. Schadschneider A., Chowdhury D., Nishinari K. Stochastic Transport in Complex Systems: From Molecules to Vehicles. (Amsterdam: Elsevier, 2010).

11. Chauwin J.-F., Ajdari A., Prost J. Force-free motion in Asymmetric structures: a mechanism without diffusive steps. Europhys. Lett. 1994. 27(6): 421. https://doi.org/10.1209/0295-5075/27/6/002

12. Rozenbaum V.M., Yang D.-Y., Lin S.H., Tsong T.Y. Catalytic Wheel as a Brownian Motor. J. Phys. Chem. B. 2004. 108(40): 15880. https://doi.org/10.1021/jp048200a

13. Rozenbaum V.M. High-temperature brownian motors: Deterministic and stochastic fluctuations of a periodic potential. JETP Lett. 2008. 88(5): 342. https://doi.org/10.1134/S0021364008170128

14. Wu S.-H., Huang N., Jaquay E., Povinelli M.L. Near-field, on-chip optical Brownian ratchets. Nano Lett. 2016. 16(8): 5261. https://doi.org/10.1021/acs.nanolett.6b02426

15. Rozenbaum V.M., Shapochkina I.V., Trakhtenberg L.I. Green's function method in the theory of Brownian motors. Physics-Uspekhi. 2019. 62(5): 496. [in Russian]. https://doi.org/10.3367/UFNe.2018.04.038347

16. Harmer G.P., Abbott D. Losing strategies can win by Parrondo's paradox. Nature. 1999. 402: 864. https://doi.org/10.1038/47220

17. Parrondo J.M.R., Harmer G.P., Abbott D. New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 2000. 85(4): 5226. https://doi.org/10.1103/PhysRevLett.85.5226

18. Parrondo J.M.R., Dinís L. Brownian motion and gambling: from ratchets to paradoxical games. Contemp. Phys. 2004. 45(2): 147. https://doi.org/10.1080/00107510310001644836

19. Derrida B. Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 1983. 31(3): 433. https://doi.org/10.1007/BF01019492

20. Rozenbaum V.M. Constructive role of chaos: Brownian motors and winning strategies in game theory. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 100. [in Russian]. https://doi.org/10.15407/hftp11.01.100

21. Shved N.Yu., Shapochkina I.V., Rosenbaum V.M. Temperature motion reversion of the adiabatic Brownian motor. Vestnik BGU. 2014. 1(2): 27. [in Russian].

22. Astumian R.D., Hänggi P. Brownian motors. Thermal motion combined with input energy gives rise to a channeling of chance that can be used to exersise control over microscopic systems. Phys. Today. 2002. 55(11): 33. https://doi.org/10.1063/1.1535005

23. Rozenbaum V.M. Low-temperature operational regime of an adiabatic Brownian motor. Low Temperature Physics. 2014. 40(5): 604. [in Russian]. https://doi.org/10.1063/1.4876230

24. Hunt A.J., Gittes F., Howard J. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 1994. 67(2): 766. https://doi.org/10.1016/S0006-3495(94)80537-5

25. Svoboda K., Block S.M. Force and velocity measured for single kinesin molecules. Cell. 1994. 77(5): 773. https://doi.org/10.1016/0092-8674(94)90060-4

26. Mogilner A., Mangel M., Baskin, R.J. Motion of molecular motor ratcheted by internal fluctuation and protein friction. Phys. Lett. A. 1998. 237(4-5): 297. https://doi.org/10.1016/S0375-9601(97)00821-9

27. Okada Y., Hirokawa N. Mechanism of the single-headed processivity: Diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl. Acad. Sci. U.S.A. 2000. 97(2): 640. https://doi.org/10.1073/pnas.97.2.640

28. Dekhtyar M.L., Ishchenko A.A., Rozenbaum V.M. Photoinduced molecular transport in biological environments based on dipole moment fluctuations. J. Phys. Chem. B. 2006. 110(41): 20111. https://doi.org/10.1021/jp063795q

29. Okada Y., Hirokawa N. A Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science. 1999. 283(5405): 1152. https://doi.org/10.1126/science.283.5405.1152




DOI: https://doi.org/10.15407/hftp11.03.395

Copyright (©) 2020 A. D. Terets, T. Ye. Korochkova, V. M. Rozenbaum, V. A. Mashira, I. V. Shapochkina, A. N. Furs, M. I. Ikim, V. F. Gromov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.