Chemistry, Physics and Technology of Surface, 2023, 14 (1), 3-18.

Particulate morphology and textural characteristics of nanosilica hydro-compacted at various wetting degree



DOI: https://doi.org/10.15407/hftp14.01.003

V. M. Gun’ko, V. V. Turov

Abstract


The particulate morphology and textural characteristics of nanosilica A–300, initial and hydro-compacted        (cA–300) by wetting with various amounts of water in the range of h = 0.5–5.0 g per gram of dry silica, strongly stirred and then dried, have been analyzed using low-temperature 1H NMR spectroscopy (treated-dried-wetted samples), small angle X-ray scattering, scanning and transmission electron microscopies, infrared spectroscopy, and nitrogen adsorption methods (treated-dried-degassed samples). The effects of the hydro-compaction of A-300 depend strongly on the wetting degree with maximum changes at h = 1.5–2.0 g/g. The wetting degree could be varied to control the reorganization of aggregates of nonporous nanoparticles (NPNP, which are composed of tightly packed adherent proto-particles or nuclei) and agglomerates of aggregates (secondary and ternary structures, respectively), as well as visible particles; i.e., there is a penta-level structural hierarchy of nanosilica with three-level supra-NPNP structures. The hydro-compaction is accompanied by non-monotonic changes in the morphological and textural characteristics of cA–300 vs. h. However, the nanoparticles are much weaker affected by the treatment than higher hierarchical structures. At h £ 1 g/g, the reorganization of aggregate/agglomerate structures does not lead to diminution of the specific surface area (SSA); however, at h ³ 1.5 g/g, the SSA value decreases, but the pore volume (estimated from nitrogen adsorption) increases despite the empty volume (estimated from the bulk density rb) of the powder decreases from 21.8 cm3/g for initial A–300 (rb = 0.045 g/cm3) to 3.45 cm3/g on hydro-compaction at h = 4.5 g/g (rb = 0.256 g/cm3), pores become more ordered with a predominant contribution of cylindrical shapes. The textural reorganization of dried hydro-compacted nanosilica is possible again after addition of new water amount. This suggests that the chemical bonds between neighboring nanoparticles do not practically form upon the hydro-compaction and subsequent drying. Thus, hydro-compacted nanosilica loses a dust-forming property (since rb strongly increases), but it remains active with respect to the NPNP mobility, e.g., in aqueous media, and the possibility of the reorganization of the supra-NPNP structures remains under various external actions that is of importance from a practical point of view.


Keywords


hydro-compacted nanosilica; wetted nanosilica; particulate morphology; textural characteristics; hierarchical structure reorganization

Full Text:

PDF

References


Hastie J.W. Materials Chemistry at High Temperatures. V. 1. Characterization. V. 2. Processing and Performance. (Clifton, New York: Humana Press, 1990).https://doi.org/10.1007/978-1-4612-0481-7

Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).

Bhushan B. Encyclopedia of Nanotechnology. (Dordrecht: Springer, 2012). https://doi.org/10.1007/978-90-481-9751-4

Basic characteristics of Aerosil fumed silica (4th ed.) Tech. Bull. Fine Particles 11. (Hanau: Evonik Industries, 2014).

Kulkarni P., Baron P.A., Willeke K. Aerosol Measurement: Principles, Techniques, and Applications. Third Edition. (New York: John Wiley & Sons, 2011). https://doi.org/10.1002/9781118001684

Büchel K.H., Moretto H.-H., Woditsch P. Industrial Inorganic Chemistry. (Weinheim: Wiley-VCH, 2000). https://doi.org/10.1002/9783527613328

Xu R., Yan Xu Y. Modern Inorganic Synthetic Chemistry. (Elsevier: Amsterdam, 2017).

Auner N., Weis J. Oganosilicon Chemistry VI. (Weinheim: Wiley-VCH Verlag GmbH, 2005). https://doi.org/10.1002/9783527618224

Mueller R., Madler L., Pratsinis S.E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 2003. 58(10): 1969. https://doi.org/10.1016/S0009-2509(03)00022-8

Camenzind A., Caseri W.R., Pratsinis S.E. Flame-made nanoparticles for nanocomposites. Nano Today. 2010. 5(1): 48. https://doi.org/10.1016/j.nantod.2009.12.007

Teoh W.Y., Lutz M. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale. 2010. 2(8): 1324. https://doi.org/10.1039/c0nr00017e

Ensor D.S. Aerosol Science and Technology: History and Reviews. (Research Triangle Park, NC: RTI Press, 2011). https://doi.org/10.3768/rtipress.2011.bk.0003.1109

Babick F. Suspensions of Colloidal Particles and Aggregates. (Berlin: Springer, 2018).

Iler R.K. The Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. (Chichester: Wiley, 1979).

Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706

Somasundaran P. Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3

Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).

Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91(1): 1. https://doi.org/10.1016/S0001-8686(99)00026-3

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003

Gun'ko V.M., Turov V.V., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3. https://doi.org/10.15407/Surface.2019.11.003

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids Surf. A. 2016. 492: 230. https://doi.org/10.1016/j.colsurfa.2015.12.030

Atkins D., Kékicheff P., Spalla O. Adhesion between colloidal silica as seen with direct force measurement. J. Colloid Interface Sci. 1997. 188(1): 234. https://doi.org/10.1006/jcis.1996.4751

Ding P., Orwa M.G., Pacek A.W. De-agglomeration of hydrophobic and hydrophilic silica nano-powders in a high shear mixer. Powder Technol. 2009. 195(3): 221. https://doi.org/10.1016/j.powtec.2009.06.003

Dekkers S., Krystek P., Peters R.J.B., Lankveld D.P.K., Bokkers B.G.H., Van Hoeven-Arentzen P.H., Bouwmeester H., Oomen A.G. Presence and risks of nanosilica in food products. Nanotoxicology. 2011. 5(3): 393. https://doi.org/10.3109/17435390.2010.519836

Taylor P., Chen H., Zhou S., Gu G., Wu L. Modification and dispersion of nanosilica. J. Dispersion Sci. Technol. 2008. 25(6): 837. https://doi.org/10.1081/DIS-200035679

Biricik H., Sarier N. Comparative study of the characteristics of nano silica-, silica fume- and fly ash - incorporated cement mortars. Mater. Res. 2014. 17(3): 570. https://doi.org/10.1590/S1516-14392014005000054

Napierska D., Thomassen L.C.J., Lison D., Martens J.A., Hoet P.H. The nanosilica hazard: another variable entity. Part. Fibre Toxicol. 2010. 7(39): 1. https://doi.org/10.1186/1743-8977-7-39

Hashim A.A. Smart Nanoparticles Technology. (Rijeka, Croatia: InTech, 2012). https://doi.org/10.5772/1969

Irfan A., Cauchi M., Edmands W., Gooderham N.J., Njuguna J., Zhu H. Assessment of temporal dose-toxicity relationship of fumed silica nanoparticle in human lung A549 cells by conventional cytotoxicity and 1H-NMR-based extracellular metabonomic assays. Toxicol. Sci. 2014. 138(2): 354. https://doi.org/10.1093/toxsci/kfu009

Eom H.-J., Choi J. Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro. 2009. 23(7): 1326. https://doi.org/10.1016/j.tiv.2009.07.010

Chang J.-S., Chang K.L.B., Hwang D.-F., Kong Z.-L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 2007. 41(6): 2064. https://doi.org/10.1021/es062347t

Brunner T.J., Wick P., Manser P., Spohn P., Grass N., Limbach L.K., Bruinink A., Stark W.J. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006. 40(14): 4374. https://doi.org/10.1021/es052069i

Koduru J.R., Karri R.R., Mubarak N.M., Bandala E.R. Sustainable Nanotechnology for Environmental Remediation. (Amsterdam: Elsevier, 2022).

Bhat R. Valorization of Agri-Food Wastes and By-Products. Recent Trends, Innovations and Sustainability Challenges. (Amsterdam: Elsevier, 2021).

Iqbal H., Bilal M., Nguyen T.A., Yasin G. Biodegradation and Biodeterioration at the Nanoscale. (Amsterdam: Elsevier, 2021).

Fu Q., Zhao X., Zhang Z., Xu W., Niu D. Effects of nanosilica on microstructure and durability of cement-based materials. Powder Technol. 2022. 404: 117447. https://doi.org/10.1016/j.powtec.2022.117447

Laím L., Caetano H., Santiago A. Review: Effects of nanoparticles in cementitious construction materials at ambient and high temperatures. J. Build. Eng. 2021. 35: 102008. https://doi.org/10.1016/j.jobe.2020.102008

Rigby S.P., Fairhead M., van der Walle C.F. Engineering silica particles as oral drug delivery vehicles. Curr. Pharm. Des. 2008. 14(18): 1821. https://doi.org/10.2174/138161208784746671

Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Prykhod'ko G.P., Remez O.S., Leboda R., Skubiszewska-Zięba J., Blitz J.P. High-pressure cryogelation of nanosilica and surface properties of cryosilicas. Colloids Surf. A. 2013. 436: 618. https://doi.org/10.1016/j.colsurfa.2013.07.036

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Oranska O.I., Palyanytsya B.B., Remez O.S., Nychiporuk Y.M., Ptushinskii Y.G., Leboda R., Skubiszewska-Zięba J. Cryogelation of individual and complex nanooxides under different conditions. Colloids Surf. A. 2014. 456: 261. https://doi.org/10.1016/j.colsurfa.2014.05.045

Gun'ko V.M., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Remez O.S., Charmas B., Skubiszewska-Zięba J. Low-temperature high-pressure cryogelation of nanooxides. J. Sol-Gel Sci. Technol. 2015. 74(1): 45. https://doi.org/10.1007/s10971-014-3575-2

Gun'ko V.M., Skubiszewska-Zięba J., Leboda R., Khomenko K.N., Kazakova O.A., Povazhnyak M.O., Mironyuk I.F. Influence of morphology and composition of fumed oxides on changes in their structural and adsorptive characteristics on hydrothermal treatment at different temperatures. J. Colloid Interface Sci. 2004. 269(2): 403. https://doi.org/10.1016/j.jcis.2003.07.015

Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Curr. Phys. Chem. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413

Gun'ko V.M., Mironyuk I.F., Zarko V.I., Voronin E.F., Turov V.V., Pakhlov E.M., Goncharuk E.V., Nychiporuk Yu.M., Kulik T.V., Palyanytsya B.B., Pakhovchishin S.V., Vlasova N.N., Gorbik P.P., Mishchuk O.A., Chuiko A.A., Skubiszewska-Zięba J., Janusz W., Turov A.V., Leboda R. Morphology and surface properties of fumed silicas. J. Colloid Interface Sci. 2005. 289(2): 427. https://doi.org/10.1016/j.jcis.2005.05.051

Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid Interface Sci. 2011. 355(2): 300. https://doi.org/10.1016/j.jcis.2010.12.008

Gun'ko V.M., Voronin E.F., Zarko V.I., Goncharuk E.V., Turov V.V., Pakhovchishin S.V., Pakhlov E.M., Guzenko N.V., Leboda R., Skubiszewska-Zięba J., Janusz W., Chibowski S., Chibowski E., Chuiko A.A. Interaction of poly(vinyl pyrrolidone) with fumed silica in dry and wet powders and aqueous suspensions. Colloids Surf. A. 2004. 233(1-3): 63. https://doi.org/10.1016/j.colsurfa.2003.11.024

Gun'ko V.M. Features of BET method application to various adsorbents. Him. Fiz. Tehnol. Poverhni. 2022. 13(3): 249. https://doi.org/10.15407/hftp13.03.249

Pujari P.K., Sen D., Amarendra G., Abhaya S., Pandey A.K., Dutta D., Mazumder S. Study of pore structure in grafted polymer membranes using slow positron beam and small-angle X-ray scattering techniques. Nucl. Instrum. Methods Phys. Res., Sect. B. 2007. 254(2): 278. https://doi.org/10.1016/j.nimb.2006.11.052

Provencher S.W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982. 27(3): 213. https://doi.org/10.1016/0010-4655(82)90173-4

Brumberger H. Small Angle X-ray Scattering. (New York: Gordon & Breach, 1965).

Dieudonné P., Hafidi A.A., Delord P., Phalippou J. Transformation of nanostructure of silica gels during drying. J. Non-Cryst. Solids. 2000. 262(1-3): 155. https://doi.org/10.1016/S0022-3093(99)00687-0

Fairén-Jiménez D., Carrasco-Marín F., Djurado D., Bley F., Ehrburger-Dolle F., Moreno-Castilla C. Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. J. Phys. Chem. B. 2006. 110(17): 8681. https://doi.org/10.1021/jp055992f

Ares A.E. X-ray Scattering. (Rijeka, Croatia: InTech, 2017). https://doi.org/10.5772/62609

Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317

Sternik D., Galaburda M., Bogatyrov V.M., Gun'ko V.M. Influence of the synthesis method on the structural characteristics of novel hybrid adsorbents based on bentonite. Colloids Interfaces. 2019. 3(1): 18. https://doi.org/10.3390/colloids3010018

Gun'ko V.M., Meikle S.T., Kozynchenko O.P., Tennison S.R., Ehrburger-Dolle F., Morfin I., Mikhalovsky S.V. Comparative characterization of carbon and polymer adsorbents by SAXS and nitrogen adsorption methods. J. Phys. Chem. C. 2011. 115(21): 10727. https://doi.org/10.1021/jp201835r

Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117

Kammler H., Beaucage G., Mueller R., Pratsinis S. Structure of flamemade silica nanoparticles by ultra-small-angle X-ray scattering. Langmuir. 2004. 20(5): 1915. https://doi.org/10.1021/la030155v

Hyeon-Lee J., Beaucage G., Pratsinis S.E., Vemury S. Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering. Langmuir. 1998. 14(20): 5751. https://doi.org/10.1021/la980308s

Simmler M., Meier M., Nirschl H. Characterization of fractal structures by spray flame synthesis using X-ray scattering. Materials. 2022. 15(6): 2124. https://doi.org/10.3390/ma15062124

Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).

Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).

Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163

Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci. 2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055

McCool B., Murphy L., Tripp C.P. A simple FTIR technique for estimating the surface area of silica powders and films. J. Colloid Interface Sci. 2006. 295(1): 294. https://doi.org/10.1016/j.jcis.2005.08.010

Gun'ko V.M., Pakhlov E.M., Skubiszewska-Zięba J., Blitz J.P. Infrared spectroscopy as a tool for textural and structural characterization of individual and complex fumed oxides. Vib. Spectrosc. 2017. 88: 56. https://doi.org/10.1016/j.vibspec.2016.11.003

Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001

Strange J.H., Rahman M., Smith E.G. Characterization of porous solids by NMR. Phys. Rev. Lett. 1993. 71(21): 3589. https://doi.org/10.1103/PhysRevLett.71.3589

Kimmich R. NMR Tomography, Diffusometry, Relaxometry. (Heidelberg: Springer, 1997).

Gun'ko V.M. Features of the morphology and texture of silica and carbon adsorbents. Surface. 2021. 13(28): 127. https://doi.org/10.15407/Surface.2021.13.127




DOI: https://doi.org/10.15407/hftp14.01.003

Copyright (©) 2023 V. M. Gun’ko, V. V. Turov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.