Chemistry, Physics and Technology of Surface, 2023, 14 (4), 464-473.

Hybrid template directed hydrothermal synthesis of MCM-41 silicas with surface silanol and 3-chloropropyl groups



DOI: https://doi.org/10.15407/hftp14.04.464

N. V. Roik, I. M. Trofymchuk, L. O. Belyakova, O. I. Oranska

Abstract


Silicas of MCM-41‑type with reactive functional groups are widely used as starting substrates in large variety of post‑synthetic chemical modification pathways. Therefore, variation of their structural characteristics in the process of templated sol‑gel synthesis or post-synthetic treatment is of great importance. The aim of this work was to elucidate the influence of template agent selection on structural features of MCM-41‑type materials with surface silanol and 3‑chloropropyl groups. For this purpose, template-assisted sol-gel condensation of structure forming silanes (tetraethyl orthosilicate and 3‑chloropropyltriethoxysilane) was carried out in the presence of decyltrimethylammonium bromide as structure-directing agent. The capability of cyclic oligosaccharide                          (β-cyclodextrin) to interact with surfactant micelles in the process of hydrothermal sol-gel synthesis and to influence the formation of mesoporous structure of silica materials was studied. The IR spectroscopy was applied to carry out control under the complete removal of template moieties from pores by extraction procedure and to confirm introduction of 3‑chloropropyl groups into the surface layer of synthesized silicas. Arrangement of mesoscale pores and structural parameters were estimated from the results of X‑ray diffraction and low-temperature adsorption-desorption of nitrogen. It has been found that β‑cyclodextrin as component of hybrid template has positive effect on porous structure of 3-chloropropyl-functionalized MCM-41-type silica causing increase of surface area accompanied with preservation of pore ordering. Moreover, both ionic surfactant and oligosaccharide components of hybrid template act as porogens during sol-gel condensation of structure forming silanes enable to prepare silica materials with micro-mesoporosity. Proposed approach can be useful in synthesis of MCM‑41‑type silicas with surface linker groups and controlled structural characteristics (pore size, geometry and ordering), which have great potential as substrates in design of sophisticated materials.


Keywords


MCM-41-type silica; sol-gel synthesis; β-cyclodextrin; decyltrimethylammonium bromide; 3 chloropropyltriethoxysilane; IR spectroscopy; X-ray diffraction; low-temperature adsorption-desorption of nitrogen

Full Text:

PDF

References


1. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992. 359: 710. https://doi.org/10.1038/359710a0

2. Costa J.A., Jesus R.A., Santos D.O., Mano J.F., Romao L.P., Paranhos C.M. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous Mesoporous Mater. 2020. 291: 109698. https://doi.org/10.1016/j.micromeso.2019.109698

3. Martinez-Edo G., Balmori A., Ponton I., Marti del Rio A., Sanchez-Garcia D. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis. Catalysts. 2018. 8(12): 617. https://doi.org/10.3390/catal8120617

4. Alahmad S. Modification of mesoporous silica MCM-41 and its applications- A review. Orient. J. Chem. 2012. 28(1): 1. https://doi.org/10.13005/ojc/280101

5. Baeza A., Ruiz-Molina D., Vallet-Regi M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin. Drug Deliv. 2017. 14(6): 783. https://doi.org/10.1080/17425247.2016.1229298

6. Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992. 114(27): 10834. https://doi.org/10.1021/ja00053a020

7. Corma A., Kan Q.,Navarro M.T., Perez-Pariente J., Rey F. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics. Chem. Mater. 1997. 9(10): 2123. https://doi.org/10.1021/cm970203v

8. Van Der Voort P., Mathieu M., Mees F., Vansant E.F. Synthesis of high-quality MCM-48 and MCM-41 by means of the GEMINI surfactant method. J. Phys. Chem. B. 1998. 102(44): 8847. https://doi.org/10.1021/jp982653w

9. Jana S.K., Nishida R., Shindo K., Kugita T., Namba S. Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals. Microporous Mesoporous Mater. 2004. 68(1-3): 133. https://doi.org/10.1016/j.micromeso.2003.12.010

10. Huo Q., Margolese D.I., Stucky G.D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 1996. 8(5): 1147. https://doi.org/10.1021/cm960137h

11. Sayari A., Liu P. Characterization of large-pore MCM-41 molecular sieves obtained via hydrothermal restructuring. Chem. Mater. 1997. 9(11): 2499. https://doi.org/10.1021/cm970128o

12. ALOthman Z.A. A review: fundamental aspects of silicate mesoporous materials. Materials. 2012. 5(12): 2874. https://doi.org/10.3390/ma5122874

13. Alahmadi S. Modification of mesoporous silica MCM-41 and its applications - A review. Orient. J. Chem. 2012. 28(1): 1. https://doi.org/10.13005/ojc/280101

14. Yoshitake H. Highly-controlled synthesis of organic layers on mesoporous silica: their structure and application to toxic ion adsorptions. New J. Chem. 2005. 29(9): 1107. https://doi.org/10.1039/b504957a

15. Maity N., Basu S., Mapa M., Rajamohanan P.R., Ganapathy S., Gopinath C.S., Bhaduri S., Lahiri G.K. Effect of spacer groups on the performance of MCM-41-supported platinum cluster-derived hydrogenation catalysts. J. Catal. 2006. 242(2): 332. https://doi.org/10.1016/j.jcat.2006.06.016

16. Idris S.A., Davidson C.M., McManamon C., Morris M.A., Anderson P., Gibson L.T. Large pore diameter MCM-41 and its application for lead removal from aqueous media. J. Hazard. Mater. 2011. 185(2-3): 898. https://doi.org/10.1016/j.jhazmat.2010.09.105

17. Roik N.V., Belyakova L.O. Sol-gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface. J. Solid State Chem. 2013. 207: 194. https://doi.org/10.1016/j.jssc.2013.09.027

18. Custodio dos Santos T., Bourrelly S., Llewellyn P.L., Walkimar de M. Carneiro J., Ronconi C.M. Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies. Phys. Chem. Chem. Phys. 2015. 17(16): 11095. https://doi.org/10.1039/C5CP00581G

19. Bodaghifard M.A., Zendehdel M., Hamidinasab M., Ahadi N., Zandi R. Functionalized mesoporous MCM-41 as a hybrid catalyst for the efficient synthesis of chromene and mono/bis phthalazine-trione derivatives. Polycyclic Aromatic Compd. 2023. 43(1): 242. https://doi.org/10.1080/10406638.2021.2014533

20. Udayakumar S., Son Y.S., Lee M.K., Park S.W., Park D.W. The synthesis of chloropropylated MCM-41 through co-condensation technique: The path finding process. Appl. Catal. A. 2008. 347(2): 192. https://doi.org/10.1016/j.apcata.2008.06.009

21. Wei F., Yang J.Y., Gao L., Gu F.N., Zhu J.H. Capturing nitrosamines in tobacco-extract solution by hydrophobic mesoporous silica. J. Hazard. Mater. 2009. 172(2-3): 1482. https://doi.org/10.1016/j.jhazmat.2009.08.016

22. Xu Y.Q., Cao Y., Xia Z.N. Microwave radiation one-pot synthesis of chloropropyl-functionalized mesoporous MCM-41. J. Cent. South Univ. 2012. 19: 2130. https://doi.org/10.1007/s11771-012-1255-3

23. Lin H.P., Cheng Y.-R., Lin C.-R., Li F.-Y., Chen C.-L., Wong S.-T., Cheng S., Liu S.-B., Wan B.-Z., Mou C.-Y., Tang C.-Y., Lin C.-Y. The synthesis and application of the mesoporous molecular sieves MCM-41 - A Review. JCCS. 1999. 46(3): 495. https://doi.org/10.1002/jccs.199900067

24. Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992. 114(27): 10834. https://doi.org/10.1021/ja00053a020

25. Namba S., Mochizuki A., Kito M. Preparation of highly ordered MCM-41 with docosyltrimethylammonium chloride (C22TMAC1) as a template and fine control of its pore size. Stud. Surf. Sci. Catal. 1998. 117: 257. https://doi.org/10.1016/S0167-2991(98)81000-8

26. Ulagappan N., Rao C.N.R. Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica. Chem. Commun. 1996. 24: 2759. https://doi.org/10.1039/cc9960002759

27. Blin J.L., Su B.L. Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders. Langmuir. 2002. 18(13): 5303. https://doi.org/10.1021/la020042w

28. Zhang H., Li X. Novel mesoporous silica materials with hierarchically ordered nanochannel: synthesis with the assistance of straight-chain alkanes and application. J. Chem. 2016. 7: 1. https://doi.org/10.1155/2016/5146573

29. Roik N.V., Dziazko M.O., Trofymchuk I.M., Oranska O.I. Role of amphiphilic organic additives in design of silica materials with ordered mesoporous structure. J. Porous Mater. 2022. 29: 317. https://doi.org/10.1007/s10934-021-01167-0

30. Junquera E., Aicart E., Tardajos G. Inclusional complexes of decyltrimethylammonium bromide and β-cyclodextrin in water. J. Phys. Chem. 1992. 96(11): 4533. https://doi.org/10.1021/j100190a074

31. WanYunus W.M.Z., Taylor J., Bloor D.M., Hall D.G., Wyn Jones E. Electrochemlcal measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with α- and β-cyciodextrins. J. Phys. Chem. 1992. 96: 8979. https://doi.org/10.1021/j100201a052

32. JiangY. B., WangX. J. Direct evidence for β-cyclodextrin induced aggregation of ionic surfactant below critical micelle concentration. Appl. Spectrosc. 1994. 48(11): 1428. https://doi.org/10.1366/0003702944028155

33. Rafati A.A., Bagheri A., Iloukhani H., Zarinehzad M. Study of inclusion complex formation between a homologous series of n-alkyltrimethylammonium bromides and β-cyclodextrin, using conductometric technique. J. Mol. Liq. 2005. 116(1): 37. https://doi.org/10.1016/j.molliq.2004.05.003

34. Tsianou M., Fajalia A.I. Cyclodextrins and surfactants in aqueous solution above the critical micelle concentration: where are the cyclodextrins located? Langmuir. 2014. 30(46): 13754. https://doi.org/10.1021/la5013999

35. Polarz S., Smarsly B., Bronstein L., Antonietti M. From cyclodextrin assemblies to porous materials by silica templating. Ang. Chem. Int. Ed. 2001. 40(23): 4417. https://doi.org/10.1002/1521-3773(20011203)40:23<4417::AID-ANIE4417>3.0.CO;2-P

36. Yim J.-H., Lyu Y.-Y., Jeong H.-D., Song S.A., Hwang I.-S., Hyeon-Lee J., Mah S.K., Chang S., Park J.-G., Hu Y.F., Sun J.N., Gidley D.W. The preparation and characterization of small mesopores in siloxane-based materials that use cyclodextrins as templates. Adv. Funct. Mater. 2003. 13(5): 382. https://doi.org/10.1002/adfm.200304287

37. Nan Z., Xue X., Hou W., Yan X., Han S. Fabrication of MCM-41 mesoporous silica through the self-assembly supermolecule of β-CD and CTAB. J. Solid State Chem. 2007. 180(2): 780. https://doi.org/10.1016/j.jssc.2006.11.011

38. Jeon J.-K., Park Y.-K., Yim J.-H. Cyclodextrin-modified MCM-41 for selective double bond migration. Res. Chem. Intermed. 2010. 36: 661. https://doi.org/10.1007/s11164-010-0202-x

39. Trotta F., Zanetti M., Camino G. Thermal degradation of cyclodextrins. Polym. Degrad. Stab. 2000. 69(3): 373. https://doi.org/10.1016/S0141-3910(00)00084-7

40. Trofymchuk I.M, Roik N., Belyakova L. Structural variety and adsorptive properties of mesoporous silicas with immobilized oligosaccharide groups. Nanoscale Res. Lett. 2017. 12: 1. https://doi.org/10.1186/s11671-017-2072-2

41. Bragg W.L. The diffraction of short electromagnetic waves by a crystal. P. Camb. Philos. Soc. 1913. 17: 43.

42. Fenelonov V.B., Romannikov V.N., Derevyankin A.Yu. Mesopore size and surface area calculations for hexagonal mesophases (types MCM-41, FSM-16, etc.) using low-angle XRD and adsorption data. Microporous Mesoporous Mater. 1999. 28(1): 57. https://doi.org/10.1016/S1387-1811(98)00280-7

43. Kruk M., Jaroniec M., Sayari A. Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes. J. Phys. Chem. B 1997. 101(4): 583. https://doi.org/10.1021/jp962000k

44. Thommes M., Smarsly B., Groenewolt M., Ravikovitch P.I., Neimark A.V. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir. 2006. 22(2): 756. https://doi.org/10.1021/la051686h

45. Van Der Voort P., Ravikovitch P.I., De Jong K.P., Benjelloun M., Van Bavel E., Janssen A.H., Neimark A.V., Weckhuysen B.M., Vansant E.F. A new templated ordered structure with combined micro- and mesopores and internal silica nanocapsules. J. Phys. Chem. B. 2002. 106(23): 5873. https://doi.org/10.1021/jp025642i

46. Landers J., Gor G.Yu., Neimark A.V. Density functional theory methods for characterization of porous materials. Colloid. .Surf. A. 2013. 437: 3. https://doi.org/10.1016/j.colsurfa.2013.01.007

47. Lai W., Yang S., Jiang Y., Zhao F., Li Z., Zaman B., Fayaz M., Li X., Chen Y. Artefact peaks of pore size distributions caused by unclosed sorption isotherm and tensile strength effect. Adsorption. 2020. 26: 633. https://doi.org/10.1007/s10450-020-00228-1




DOI: https://doi.org/10.15407/hftp14.04.464

Copyright (©) 2023 N. V. Roik, I. M. Trofymchuk, L. O. Belyakova, O. I. Oranska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.