Dielectric function and the absorption cross-section of the metal-graphene nanocylinders of the finite length
DOI: https://doi.org/10.15407/hftp13.04.467
Abstract
The behavior of the diagonal components of the dielectric tensor and the behavior of the absorption cross-section in the different frequency ranges for the composite cylindrical nanostructures “metallic core – graphene shell” have been studied. In order to obtain the calculation formulas one uses the relations for the longitudinal and transverse components of the dielectric tensors for metallic core and graphene shell, which are determined by Drude model and Cubo model correspondingly. The consideration is carried out in the frameworks of “equivalent” elongated spheroid approach, according to which the defining dimensional parameter is effective aspect ratio, calculated from the condition of the equality of the corresponding axial inertia moments for two-layer cylinder and the “equivalent” elongated spheroid. The numerical results have been obtained for the nanocylinders with the cores of different metals, different radius and with the different number of graphene layers. The variation of amplitude and the variation of the location of extremes of the real and imaginary parts of the transverse component of the dielectric tensor under the increase in radius of the metallic core and the thickness of the graphene shell have been analyzed. It has been shown that the variation of the radius of the core has the significantly greater influence on the properties of the polarizability resonances and absorption cross-section than the variation of the number of graphene layers. The reasons of the presence of two maxima of the absorption cross-section for the metal-graphene cylinders which differ in both amplitude and width and located in infrared, violet and near ultraviolet parts of the spectrum and their relation with the surface plasmonic resonances in the metallic core and with the terahertz plasmons of graphene have been found. The factors which have an effect on amplitude and on the shift of the maxima of the absorption cross-section have been found. The reasons of the different width of maxima, which are located in the different spectral intervals, have been determined.
Keywords
References
Dmitruk N.L., Goncharenko A.V., Venger E.F. Optics of small particles and composite media. (Kyiv: Naukova Dumka, 2009).
Schasfoort R.B.M. Handbook of Surface Plasmon Resonance: Edition 2. (Royal Society of Chemistry, 2017). https://doi.org/10.1039/9781788010283
Korotun A.V., Koval' A.O., Kryuchin A.A., Rubish V.M., Petrov V.V., Titov I.M. Nanophoton technologies. Modern state and prospects. (Uzhgorod: PE Sabov A.M., 2019). [in Ukrainian].
Sau T.K., Rogach A.L., Jäckel F., Klar T.A., Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010. 22(16): 1805. https://doi.org/10.1002/adma.200902557
Grigorchuk N.I. Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix. Europhys. Lett. 2012. 97(4): 45001. https://doi.org/10.1209/0295-5075/97/45001
Karandas Ya., Korotun A. An optical radiation efficiency of the composite nanocylinders. In: International Conference on Electronics and Information Technologies (ELIT 2021). Proc. 12th Int. Conf. (May, 2021, Lviv, Ukraine). P. 222. https://doi.org/10.1109/ELIT53502.2021.9501091
Korotun A.V., Pavlyshche N.I. Cross Sections for Absorption and Scattering of Electromagnetic Radiation by Ensembles of Metal Nanoparticles of Different Shapes. Phys. Met. Metall. 2021. 122(10): 941. https://doi.org/10.1134/S0031918X21100057
Huang X.H., Neretina S., El-Sayed M.A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 2009. 21(48): 4880. https://doi.org/10.1002/adma.200802789
Pérez-Juste J., Pastoriza-Santos I., Liz-Marzán L.M., Mulvaney P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005. 249(17-18): 1870. https://doi.org/10.1016/j.ccr.2005.01.030
Gole A., Murphy C.J. Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed. Chem. Mater. 2004. 16(19): 3633. https://doi.org/10.1021/cm0492336
Nikoobakht B., El-Sayed M.A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003. 15(10): 1957. https://doi.org/10.1021/cm020732l
Busbee B.D., Obare S.O., Murphy C.J. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Adv. Mater. 2003. 15(5): 414. https://doi.org/10.1002/adma.200390095
Fu G., Liu W., Feng S., Yue X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012. 48(94): 11567. https://doi.org/10.1039/c2cc36456e
Wei H., Pan D., Zhang S., Li Z., Li Q., Liu N., Wang W., Xu H. Plasmon Waveguiding in Nanowires. Chem. Rev. 2018. 118(6): 2882. https://doi.org/10.1021/acs.chemrev.7b00441
Khan N.U., Lin J., Younas M.R., Liu X., Shen L. Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol. 2021. 12(1): 20. https://doi.org/10.1186/s12645-021-00092-w
Zhang M., Zhang X., Zhao K., Dong Y., Yang W., Liu J., Li D. Assembly of gold nanorods with L-cysteine reduced graphene oxide for highly efficient NIR-triggered photothermal therapy. Spectrochim. Acta A: Molec. Biomol. Spectrosc. 2022. 266: 120458. https://doi.org/10.1016/j.saa.2021.120458
Ding S., Ma L., Feng J., Chen Y., Yang D., Wang Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Research. 2022. 15(3): 2715. https://doi.org/10.1007/s12274-021-3740-1
Sun J., Yu X., Li Z., Zhao J., Zhu P., Dong X., Yu Z., Zhao Z., Shi D., Wang J., Dai H. Ultrasonic Modification of Ag Nanowires and Their Applications in Flexible Transparent Film Heaters and SERS Detectors. Materials. 2019. 12(6): 893. https://doi.org/10.3390/ma12060893
Zhang Y., Xu D., Li W., Yu J., Chen Y. Effect of Size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J. Nanomater. 2012. 2012(7): 7. https://doi.org/10.1155/2012/375496
Rayavarapu R.G., Petersen W., Hartsuiker L., Chin P., Janssen H., Van Leeuwen F.W.B., Otto C., Manohar S., Van Leeuwen T.G. In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology. 2010. 21(14): 145101. https://doi.org/10.1088/0957-4484/21/14/145101
Feng L., Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine. 2011. 6(2): 317. https://doi.org/10.2217/nnm.10.158
Fares H., Almokhtar M., Almarashi J.Q.M., Rashad M., Moustafa S. Tunable narrow-linewidth surface plasmon resonances of graphene-wrapped dielectric nanoparticles in the visible and near-infrared. Physica E. 2022. 142: 115300. https://doi.org/10.1016/j.physe.2022.115300
Markovic Z.M., Harhaji-Trajkovic L.M., Todorovic-Markovic B.M., Kepić D.P., Arsikin K.M., Jovanović S.P., Pantovic A.C., Dramićanin M.D., Trajkovic V.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 2011. 32(4): 1121. https://doi.org/10.1016/j.biomaterials.2010.10.030
Bian X., Song Z.L., Qian Y., Gao W., Cheng Z.Q., Chen L., Liang H., Ding D., Nie X.K., Chen Z., Tan W. Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci. Rep. 2014. 4: 6093. https://doi.org/10.1038/srep06093
Farokhnezhad M., Esmaeilzadeh M. Graphene coated gold nanoparticles: an emerging class of nanoagents for photothermal therapy applications. Phys. Chem. Chem. Phys. 2019. 21(33): 18352. https://doi.org/10.1039/C9CP03126J
Farokhnezhad M., Esmaeilzadeh M., Nourian M., Jalaeikhoo H., Rajaeinejad M., Iravani S., Majidzadeh-A K. Silica-gold nanoshell@graphene: A novel class of plasmonic nanoagents for photothermal cancer therapy. J. Phys. D: Appl. Phys. 2020. 53(40): 405401. https://doi.org/10.1088/1361-6463/ab95bf
Grigorchuk N.I., Tomchuk P.M. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B. 2011. 84(8): 085448. https://doi.org/10.1103/PhysRevB.84.085448
Grigorchuk N.I. Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium. J. Opt. Soc. Am. B. 2012. 29(12): 3404. https://doi.org/10.1364/JOSAB.29.003404
Tomchuk P.M. Dependence of light scattering cross-section by metal nanoparticles on their shape. Ukr. Fiz. Zh. 2012. 57: 553. [in Ukrainian].
Grigorchuk N.I. Broadening of surface plasmon resonance line in spheroidal metallic nanoparticles. Journal of Physical Studies. 2016. 20(1-2): 1701. https://doi.org/10.30970/jps.20.1701
Grygorchuk N.I. Behaviour of a line of the surface plasmon resonance in metal nanoparticles. Metallofizika i Noveishie Tekhnologii. 2016. 38(6): 717. https://doi.org/10.15407/mfint.38.06.0717
Korotun A.V., Koval A.O., Reva V.I. Optical absorption of composite with bilayer nanoparticles. Journal of Physical Studies. 2019. 23(2): 2603. https://doi.org/10.30970/jps.23.2603
Korotun A.V., Koval' A.A. Optical Properties of Spherical Metal Nanoparticles Coated with an Oxide Layer. Opt. Spectrosc. 2019. 127(6): 1161. https://doi.org/10.1134/S0030400X19120117
Korotun A.V., Koval' A.A., Reva V.I., Titov I.N. Optical Absorption of a Composite Based on Bimetallic Nanoparticles. Classical Approach. Phys. Met. Metall. 2019. 120(11): 1040. https://doi.org/10.1134/S0031918X19090059
Korotun A.V., Karandas Ya.V., Reva V.I., Titov I.M. Polarizability of two-layer metal-oxide nanowires. Ukr. J. Phys. 2021. 66(10): 908. https://doi.org/10.15407/ujpe66.10.908
Korotun A.V., Karandas Ya.V. Surface Plasmons in a Nanotube with a Finite-Thickness Wall. Phys. Met. Metall. 2022. 123(1): 7. https://doi.org/10.1134/S0031918X22010070
Korotun A.V., Pavlishche N.I. Anisotropy of the Optical Properties of Metal Nanodisks. Opt. Spectrosc. 2022. 130(4): 269. https://doi.org/10.1134/S0030400X22040075
Liu M., Guyot-Sionnest P. Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods. J. Phys. Chem. B. 2004. 108(19): 5882. https://doi.org/10.1021/jp037644o
Constantin D. Why the aspect ratio? Shape equivalence for the extinction spectra of gold nanoparticles. Eur. Phys. J. E. 2015. 38: 116. https://doi.org/10.1140/epje/i2015-15116-2
Farokhnezhad M., Esmaeilzadeh M. Optical and Photothermal Properties of Graphene Coated Au-Ag Hollow Nanoshells: A Modeling for Efficient Photothermal Therapy. J. Phys. Chem. C. 2019. 123(47): 28907. https://doi.org/10.1021/acs.jpcc.9b08648
Gans R. Über die Form ultramikroskopischer Goldteilchen. Ann. Phys. 1912. 342(5): 881. https://doi.org/10.1002/andp.19123420503
Link S., El-Sayed M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000. 19(3): 409. https://doi.org/10.1080/01442350050034180
DOI: https://doi.org/10.15407/hftp13.04.467
Copyright (©) 2022 Ya. V. Karandas, A. V. Korotun
This work is licensed under a Creative Commons Attribution 4.0 International License.