Chemistry, Physics and Technology of Surface, 2022, 13 (4), 467-475.

Dielectric function and the absorption cross-section of the metal-graphene nanocylinders of the finite length



DOI: https://doi.org/10.15407/hftp13.04.467

Ya. V. Karandas, A. V. Korotun

Abstract


The behavior of the diagonal components of the dielectric tensor and the behavior of the absorption cross-section in the different frequency ranges for the composite cylindrical nanostructures “metallic core – graphene shell” have been studied. In order to obtain the calculation formulas one uses the relations for the longitudinal and transverse components of the dielectric tensors for metallic core and graphene shell, which are determined by Drude model and Cubo model correspondingly. The consideration is carried out in the frameworks of “equivalent” elongated spheroid approach, according to which the defining dimensional parameter is effective aspect ratio, calculated from the condition of the equality of the corresponding axial inertia moments for two-layer cylinder and the “equivalent” elongated spheroid. The numerical results have been obtained for the nanocylinders with the cores of different metals, different radius and with the different number of graphene layers. The variation of amplitude and the variation of the location of extremes of the real and imaginary parts of the transverse component of the dielectric tensor under the increase in radius of the metallic core and the thickness of the graphene shell have been analyzed. It has been shown that the variation of the radius of the core has the significantly greater influence on the properties of the polarizability resonances and absorption cross-section than the variation of the number of graphene layers. The reasons of the presence of two maxima of the absorption cross-section for the metal-graphene cylinders which differ in both amplitude and width and located in infrared, violet and near ultraviolet parts of the spectrum and their relation with the surface plasmonic resonances in the metallic core and with the terahertz plasmons of graphene have been found. The factors which have an effect on amplitude and on the shift of the maxima of the absorption cross-section have been found. The reasons of the different width of maxima, which are located in the different spectral intervals, have been determined.


Keywords


metal-graphene nanocylinder; dielectric tensor; relaxation rate; absorption cross-section; depolarization factor; equivalent ellipsoid; effective aspect ratio

Full Text:

PDF

References


Dmitruk N.L., Goncharenko A.V., Venger E.F. Optics of small particles and composite media. (Kyiv: Naukova Dumka, 2009).

Schasfoort R.B.M. Handbook of Surface Plasmon Resonance: Edition 2. (Royal Society of Chemistry, 2017). https://doi.org/10.1039/9781788010283

Korotun A.V., Koval' A.O., Kryuchin A.A., Rubish V.M., Petrov V.V., Titov I.M. Nanophoton technologies. Modern state and prospects. (Uzhgorod: PE Sabov A.M., 2019). [in Ukrainian].

Sau T.K., Rogach A.L., Jäckel F., Klar T.A., Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010. 22(16): 1805. https://doi.org/10.1002/adma.200902557

Grigorchuk N.I. Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix. Europhys. Lett. 2012. 97(4): 45001. https://doi.org/10.1209/0295-5075/97/45001

Karandas Ya., Korotun A. An optical radiation efficiency of the composite nanocylinders. In: International Conference on Electronics and Information Technologies (ELIT 2021). Proc. 12th Int. Conf. (May, 2021, Lviv, Ukraine). P. 222. https://doi.org/10.1109/ELIT53502.2021.9501091

Korotun A.V., Pavlyshche N.I. Cross Sections for Absorption and Scattering of Electromagnetic Radiation by Ensembles of Metal Nanoparticles of Different Shapes. Phys. Met. Metall. 2021. 122(10): 941. https://doi.org/10.1134/S0031918X21100057

Huang X.H., Neretina S., El-Sayed M.A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 2009. 21(48): 4880. https://doi.org/10.1002/adma.200802789

Pérez-Juste J., Pastoriza-Santos I., Liz-Marzán L.M., Mulvaney P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005. 249(17-18): 1870. https://doi.org/10.1016/j.ccr.2005.01.030

Gole A., Murphy C.J. Seed-Mediated Synthesis of Gold Nanorods:  Role of the Size and Nature of the Seed. Chem. Mater. 2004. 16(19): 3633. https://doi.org/10.1021/cm0492336

Nikoobakht B., El-Sayed M.A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003. 15(10): 1957. https://doi.org/10.1021/cm020732l

Busbee B.D., Obare S.O., Murphy C.J. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Adv. Mater. 2003. 15(5): 414. https://doi.org/10.1002/adma.200390095

Fu G., Liu W., Feng S., Yue X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012. 48(94): 11567. https://doi.org/10.1039/c2cc36456e

Wei H., Pan D., Zhang S., Li Z., Li Q., Liu N., Wang W., Xu H. Plasmon Waveguiding in Nanowires. Chem. Rev. 2018. 118(6): 2882. https://doi.org/10.1021/acs.chemrev.7b00441

Khan N.U., Lin J., Younas M.R., Liu X., Shen L. Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol. 2021. 12(1): 20. https://doi.org/10.1186/s12645-021-00092-w

Zhang M., Zhang X., Zhao K., Dong Y., Yang W., Liu J., Li D. Assembly of gold nanorods with L-cysteine reduced graphene oxide for highly efficient NIR-triggered photothermal therapy. Spectrochim. Acta A: Molec. Biomol. Spectrosc. 2022. 266: 120458. https://doi.org/10.1016/j.saa.2021.120458

Ding S., Ma L., Feng J., Chen Y., Yang D., Wang Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Research. 2022. 15(3): 2715. https://doi.org/10.1007/s12274-021-3740-1

Sun J., Yu X., Li Z., Zhao J., Zhu P., Dong X., Yu Z., Zhao Z., Shi D., Wang J., Dai H. Ultrasonic Modification of Ag Nanowires and Their Applications in Flexible Transparent Film Heaters and SERS Detectors. Materials. 2019. 12(6): 893. https://doi.org/10.3390/ma12060893

Zhang Y., Xu D., Li W., Yu J., Chen Y. Effect of Size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J. Nanomater. 2012. 2012(7): 7. https://doi.org/10.1155/2012/375496

Rayavarapu R.G., Petersen W., Hartsuiker L., Chin P., Janssen H., Van Leeuwen F.W.B., Otto C., Manohar S., Van Leeuwen T.G. In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology. 2010. 21(14): 145101. https://doi.org/10.1088/0957-4484/21/14/145101

Feng L., Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine. 2011. 6(2): 317. https://doi.org/10.2217/nnm.10.158

Fares H., Almokhtar M., Almarashi J.Q.M., Rashad M., Moustafa S. Tunable narrow-linewidth surface plasmon resonances of graphene-wrapped dielectric nanoparticles in the visible and near-infrared. Physica E. 2022. 142: 115300. https://doi.org/10.1016/j.physe.2022.115300

Markovic Z.M., Harhaji-Trajkovic L.M., Todorovic-Markovic B.M., Kepić D.P., Arsikin K.M., Jovanović S.P., Pantovic A.C., Dramićanin M.D., Trajkovic V.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 2011. 32(4): 1121. https://doi.org/10.1016/j.biomaterials.2010.10.030

Bian X., Song Z.L., Qian Y., Gao W., Cheng Z.Q., Chen L., Liang H., Ding D., Nie X.K., Chen Z., Tan W. Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci. Rep. 2014. 4: 6093. https://doi.org/10.1038/srep06093

Farokhnezhad M., Esmaeilzadeh M. Graphene coated gold nanoparticles: an emerging class of nanoagents for photothermal therapy applications. Phys. Chem. Chem. Phys. 2019. 21(33): 18352. https://doi.org/10.1039/C9CP03126J

Farokhnezhad M., Esmaeilzadeh M., Nourian M., Jalaeikhoo H., Rajaeinejad M., Iravani S., Majidzadeh-A K. Silica-gold nanoshell@graphene: A novel class of plasmonic nanoagents for photothermal cancer therapy. J. Phys. D: Appl. Phys. 2020. 53(40): 405401. https://doi.org/10.1088/1361-6463/ab95bf

Grigorchuk N.I., Tomchuk P.M. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B. 2011. 84(8): 085448. https://doi.org/10.1103/PhysRevB.84.085448

Grigorchuk N.I. Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium. J. Opt. Soc. Am. B. 2012. 29(12): 3404. https://doi.org/10.1364/JOSAB.29.003404

Tomchuk P.M. Dependence of light scattering cross-section by metal nanoparticles on their shape. Ukr. Fiz. Zh. 2012. 57: 553. [in Ukrainian].

Grigorchuk N.I. Broadening of surface plasmon resonance line in spheroidal metallic nanoparticles. Journal of Physical Studies. 2016. 20(1-2): 1701. https://doi.org/10.30970/jps.20.1701

Grygorchuk N.I. Behaviour of a line of the surface plasmon resonance in metal nanoparticles. Metallofizika i Noveishie Tekhnologii. 2016. 38(6): 717. https://doi.org/10.15407/mfint.38.06.0717

Korotun A.V., Koval A.O., Reva V.I. Optical absorption of composite with bilayer nanoparticles. Journal of Physical Studies. 2019. 23(2): 2603. https://doi.org/10.30970/jps.23.2603

Korotun A.V., Koval' A.A. Optical Properties of Spherical Metal Nanoparticles Coated with an Oxide Layer. Opt. Spectrosc. 2019. 127(6): 1161. https://doi.org/10.1134/S0030400X19120117

Korotun A.V., Koval' A.A., Reva V.I., Titov I.N. Optical Absorption of a Composite Based on Bimetallic Nanoparticles. Classical Approach. Phys. Met. Metall. 2019. 120(11): 1040. https://doi.org/10.1134/S0031918X19090059

Korotun A.V., Karandas Ya.V., Reva V.I., Titov I.M. Polarizability of two-layer metal-oxide nanowires. Ukr. J. Phys. 2021. 66(10): 908. https://doi.org/10.15407/ujpe66.10.908

Korotun A.V., Karandas Ya.V. Surface Plasmons in a Nanotube with a Finite-Thickness Wall. Phys. Met. Metall. 2022. 123(1): 7. https://doi.org/10.1134/S0031918X22010070

Korotun A.V., Pavlishche N.I. Anisotropy of the Optical Properties of Metal Nanodisks. Opt. Spectrosc. 2022. 130(4): 269. https://doi.org/10.1134/S0030400X22040075

Liu M., Guyot-Sionnest P. Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods. J. Phys. Chem. B. 2004. 108(19): 5882. https://doi.org/10.1021/jp037644o

Constantin D. Why the aspect ratio? Shape equivalence for the extinction spectra of gold nanoparticles. Eur. Phys. J. E. 2015. 38: 116. https://doi.org/10.1140/epje/i2015-15116-2

Farokhnezhad M., Esmaeilzadeh M. Optical and Photothermal Properties of Graphene Coated Au-Ag Hollow Nanoshells: A Modeling for Efficient Photothermal Therapy. J. Phys. Chem. C. 2019. 123(47): 28907. https://doi.org/10.1021/acs.jpcc.9b08648

Gans R. Über die Form ultramikroskopischer Goldteilchen. Ann. Phys. 1912. 342(5): 881. https://doi.org/10.1002/andp.19123420503

Link S., El-Sayed M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000. 19(3): 409. https://doi.org/10.1080/01442350050034180




DOI: https://doi.org/10.15407/hftp13.04.467

Copyright (©) 2022 Ya. V. Karandas, A. V. Korotun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.