Chemistry, Physics and Technology of Surface, 2014, 5 (1), 74-81.

Synthesis and stabilization of Cu nanoparticles in aqueous solutions and their bactericidal activity



I. S. Petrik, A. M. Eremenko, N. P. Smirnova, G. I. Korchak, A. I. Mikhiyenkova

Abstract


Colloids of copper nanoparticles were synthesized by reduction of copper sulfate and copper acetate in aqueous solutions using sodium tetrahydroborate in the presence of potassium iodide at room temperature. These particles are unstable in comparison with those of silver and gold, especially in the air. Therefore, the additional amount of stabilizers: polyethylene glycol, sodium dodecyl sulfate, colloidal silica and nonionic amphiphilic triblocks copolymer Pluronic have been used. It has been found that stability of Cu increases after stabilizer adding to the fresh-prepared nanoparticles covered with iodine ions. It has been shown that copper nanoparticles have a high bactericidal activity against bacteria Escherichia coli, higher than that of Cu2+ ions as well as oxide layer formed on the Cu nanoparticle surface. Bactericidal activity of CuO is comparable with that of related ions.

Keywords


copper nanoparticles; bactericidal activity; stabilizer; aqueous solution; Escherichia coli

Full Text:

PDF (Українська)

References


1. Zheng H., Mirsaidov U., Wang L.-W. and Matsudaira P. Electron beam manipulation of Nanoparticles // Nano Lett. – 2012. – V. 12, N 11. – Р. 5644–5648.

2. Андрусишина И.Н. Наночастицы металлов, способы получения, физикохимические свойства, методы исследования и оценка токсичности // Сучасні проблеми токсико-логії. – 2011. – № 3. – C. 5–14.

3. Pal S., Tak Y., Song J.M. Antimicrobial activity of spherical silver nanoparticles prepared using a biocompatible macromolecular capping agent: evidence for induction of a greatly prolonged bacterial lag phase // Appl. Environ. Microbiol. – 2007. – V. 73. – P. 1712–1720.

4. Brigger I., Dubernet C., Couvreur P. Nanoparticles in cancer therapy and diagnosis // Adv. Drug Deliv. Rev. – 2002. – V. 54. – P. 631–651.

5. Meshitsuka S., Ishizawa M., Nose T. Uptake and toxic effects of heavy metal ions: interactions among cadmium, copper and zinc in cultured cells // J. Experientia. – 1987. – V. 43, N 2. – P. 151–156.

6. Schmidt M., Attaway I. Fairey S. et al. Copper continuously limits the concentration of bacteria resident on bed rails within the intensive care unit // Infect Control Hosp. Epidemiol. – 2013. – V. 34, N 5. – P. 530–533.

7. Wang Y., Zi X.-Y., Su J. et al. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells // Int. J. Nanomedicine. – 2012. – V. 7. – P. 2641–2652.

8. Мешалкин Ю.П. Бгатова Н.П. Перспективы и проблемы использования неорга-нических наночастиц в онкологии (обзор) // Journal of Siberian Federal University. Biology 3. – 2008. – V. 1. – P. 248–268.

9. Kapoor S., Joshi R., Mukherjee T. Influence of I- anions on the formation and stabilization of copper nanoparticles // Chem. Phys. Lett. – 2002. – V. 354. – P. 443–448.

10. EN 13727:2003 Chemical disinfectants and antiseptics – Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants for instruments used in the medical area – Test method and requirements (phase 2, step 1).

11. Сайкова С.В., Воробьева С.А., Михлин Ю.Л. Влияние реакционных условий  на процесс образования наночастиц меди при восста-новлении ионов меди (II) водными растворами боргидрида натрия // Журн. Сибирского государственного универси-тета. – 2012. – № 1. – С. 61–72.

12. Булавченко А.И., Арымбаева А.Т., Булавченко О.А. и др. Получение наночастиц золота в обратных мицеллах Triton N–42 после предварительного концентрирования из кислых сульфатно-хлоридных растворов // Журн. физ. химии. – 2006. – Т. 80, № 12. – С. 2220–2225.

13. Сергеев Г.Б. Нанохимия металлов // Успехи химии. – 2001. – Т. 70, № 10. – С. 915–933.

14. Mukha Y., Eremenko А., Korchak G., Michienkova А. Antibacterial action and physicochemical properties of stabilized silver and gold nanostructures on the surface of disperse silica // J. Water Resource and Protection. – 2010. – V. 2. – P. 131–136.

15. Peng Z., Guo L., Zhang Z. et al. Micelle-assisted one-pot synthesis of water-soluble polyaniline-gold composite particles // Langmuir. – 2006. – V. 22. – Р. 10915–10918.




Copyright (©) 2014 I. S. Petrik, A. M. Eremenko, N. P. Smirnova, G. I. Korchak, A. I. Mikhiyenkova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.