Chemistry, Physics and Technology of Surface, 2015, 6 (1), 32-41.

Comparative Quantum Chemical Examination of Lithiation/Delithiation Processes in Sin Nanoclusters and CmSin Nanocomposites



DOI: https://doi.org/10.15407/hftp06.01.032

M. T. Kartel, V. S. Kuts, A. G. Grebenyuk, Yu. А. Tarasenko

Abstract


A comparative quantum chemical (РМ3 method) examination has been carried out of lithiation/delithiation processes in Sin nanoclusters and СmSin nanocomposites. These processes in the nanocomposites (25 and ~30% С, respectively) have been shown to effect slightly on the volumes and structures of initial (СmSin), lithiated (Lik=0-52СmSin), and delithiated (Lik=52-0СmSin) silicon-carbon matrices Si/С. Electrodes from such materials should not undergo destructive effect of periodic deformations in charge/discharge cycles. On the contrary, at lesser carbon concentrations (С6Si13 nanocomposite, ~16% С) lithiation results in the 1.8 times hopping expansion of V(С6Si13), and delithiation – in the change in structure of initial silicon-carbon matrix Si/С. For Si/С electrodes with greater (more than 37%) carbon concentration (Сm>18Sin composites), lithiation results in a monotonous increase in the volume (1.3 times for С18Si13 and 1.5 times for С26Si13) whereas delithiatin leads to a considerable change in the initial structure of silicon-carbon matrix.

Keywords


silicon nanoclusters; silicon-carbon nanocomposites; lithiation/delithiation; specific volume; semiempirical quantum chemical treatment

Full Text:

PDF

References


1. Obrovac M.N., Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004. 7(5): A93. https://doi.org/10.1149/1.1652421

2. Kasavajjula U., Wang Ch., Appleby A.J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources. 2007. 163(2): 1003.  https://doi.org/10.1016/j.jpowsour.2006.09.084

3. Larcher D., Beattie S., Morcrette M., Edström K., Jumas J.-C., Tarascon J.-M. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 2007. 17: 3759.  https://doi.org/10.1039/b705421c

4. Boukamp B.A., Lesh G.C., Huggins R.A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981. 128(4): 725.  https://doi.org/10.1149/1.2127495

5. Kuksenko S.P., Kuts V.S., Tarasenko Yu.A., Kartel M.T. Electrochemical investigations and quantum chemical calculations of the system SinLim. Him. Fiz. Tehnol. Poverhni. 2011. 2(3): 221. [in Russian].

6. Yang J., Wang B.F., Wang K., Wen Z.S. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 2003. 6(8): A154.  https://doi.org/10.1149/1.1585251

7. Dimov N., Kugino S., Yoshio M. Mixed silicon–graphite composites as anode material for lithium ion batteries: Influence of preparation conditions on the properties of the material. J. Power Sources. 2004. 136(1): 108.  https://doi.org/10.1016/j.jpowsour.2004.05.012

8. Ng S.H., Wang J., Wexler D. Konstantinov K., Guo Z.-P., Liu H.-K. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 2006. 45(41): 6896.  https://doi.org/10.1002/anie.200601676

9. Hochgatterer N.S., Schweiger M.R., Koller S., Winter M. Silicon-graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid State Lett. 2008. 11(5): A76.  https://doi.org/10.1149/1.2888173

10. Khomenko V.G., Barsukov V.Z. Characterization of silicon-and carbon-based composite anodes for lithium-ion batteries. Electrochim. Acta. 2007. 52(8): 2829.  https://doi.org/10.1016/j.electacta.2006.11.006

11. Roginskaya Y.E., Kulova T.L., Skundin A.M., Bruk M.A., Klochikhina A.V., Kozlova N.V., Kal'nov V.A., Loginov B.A. The structure and properties of a new type of nanostructured composite Si/C electrodes for lithium ion accumulators. Russ. J. Phys. Chem. A. 2008. 82(10): 1655.  https://doi.org/10.1134/S0036024408100063

12. Zavyalov S.A., Kulova T.L. Kupriyanov L.Y. Skundin A.M. The structure and charge-storage capacitance of carbonized films based on silicon-polymer nanocomposites. Russ. J. Phys. Chem. A. 2008. 82(13): 2165.  https://doi.org/10.1134/S0036024408130013

13. Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.A., Kartel N.T. Forming a stable amorphous phase in the carbon-coated silicon upon deep electrochemical lithiation. Him. Fiz. Tehnol. Poverhni. 2010. 1(1): 57. [in Russian].

14. Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.A., Kartel N.T. Nanocomposite silicon-carbon for hybride electrodes of lithium-ion batteries. Problems of Chemistry and Chemical Technology. 2011. 4: 299. [in Russian].

15. Wilson A.M., Reimers J.N., Fuller E.W., Dahn J.R. Lithium insertion in pyrolyzed siloxane polymers. Solid State Ionics. 1994. 74(3–4): 249.  https://doi.org/10.1016/0167-2738(94)90217-8

16. Holzapfel M., Buqa H., Krumeich F., Novaka P., Petrat F.-M., Veit C. Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 2005. 8(10): A516.  https://doi.org/10.1149/1.2030448

17. Jung Y.S., Lee K.T., Oh S.M. Si–carbon core–shell composite anode in lithium secondary batteries. Electrochem. Acta. 2007. 52(24): 7061.  https://doi.org/10.1016/j.electacta.2007.05.031

18. Yoshio M., Wang H., Fukuda K. Umeno T., Dimov N., Ogumi Z. Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 2002. 149(12): A1598.  https://doi.org/10.1149/1.1518988

19. Kim B.-C., Uono H., Sato T. Fuse T., Ishihara T., Senna M. Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill. Solid State Ionics. 2004. 172(1–4): 33.  https://doi.org/10.1016/j.ssi.2004.02.028

20. Liu Y., Hanai K., Yang J. Imanishi N., Hirano A., Takeda Y. Silicon/carbon composites as anode materials for Li-ion batteries. Electrochem. Solid-State Lett. 2004. 7(10): A369.  https://doi.org/10.1149/1.1795031

21. Schmidt M.W., Baldridge K.K., Boatz J.A. Elbert S.T., Gordon M.S., Jensen J.H., Koseki Sh., Matsunaga N., Nguyen K.A., Su Sh., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347.  https://doi.org/10.1002/jcc.540141112

22. Maia J.D.C., Urquiza Carvalho G.A., Mangueira Jr. C.P., Santana S.R., Cabral L.A.F., Rocha G.B. GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J. Chem. Theory Comput. 2012. 8(9): 3072.  https://doi.org/10.1021/ct3004645

23. Iwamatsu M. Global geometry optimization of silicon clusters using the space-fixed genetic algorithm. J. Chem. Phys. 2000. 112: 10976.   https://doi.org/10.1063/1.481737

24. Li B.-X., Cao P.-L., Zhan S.-C. Ground state structures of Sin (n=11–25) clusters. Phys. Lett. A. 2003. 316(3–4): 252.   https://doi.org/10.1016/S0375-9601(03)01173-3

25. Zhu X.L., Zeng X.C., Lei Y.A., Pan B. Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20. J. Chem. Phys. 2004. 120(19): 8985.  https://doi.org/10.1063/1.1690755




DOI: https://doi.org/10.15407/hftp06.01.032

Copyright (©) 2015 M. T. Kartel, V. S. Kuts, A. G. Grebenyuk, Yu. А. Tarasenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.