Chemistry, Physics and Technology of Surface, 2017, 8 (1), 80-90.

Complex standardization of silica–multiherbal nanodispersed Phytosil preparations



DOI: https://doi.org/10.15407/hftp08.01.080

N. O. Lipkovska, V. M. Barvinchenko, M. T. Kartel

Abstract


Number of dietary supplements under the trade name of Phytosils based on fumed silica as enterosorbent and highly dispersed native medicinal plants in various combinations and ratio aimed on specific therapeutic action were developed by the authors. Essential bioactive components of Phytosils are plantpolyphenols known for their antiallergenic, antiatherogenic, antiinflammatory, antimicrobial, antioxidant, antithrombotic, cardioprotective and vasodilatory effects which are attributed mainly to their antioxidant activity. Therefore, the value of antioxidant activity in relation to total phenolic content could be used for the standardization of these new herbal dietary supplements. Asimple, rapidand sensitive spectrophotometric method for the determination of total antioxidant activity of herbal products has been developed and tested on seven Phytosil multiherbal dietary supplements. The method was based on the reducing of yellow (λ′max=268 nm, λmax′′=298 nm)copper(II) tetrabenzo-[b,f,j,n][1,5,9,13]-tetraazacyclohexadecine complex (CuTAAB2+) by natural antioxidants with formation of blue (λmax = 660–712 nm) copper(I) complex CuTAAB+. It has been shown that total antioxidant activity of Phytosil dietary supplements strongly correlates to their total phenolic content (all r2 values ≥ 0.960) confirming that phenoliccompounds are dominant antioxidant components in these preparations. It can be concluded that antioxidant activity values determined by the proposed CuTAAB2+ reducingmethod and total phenolic content determined at optimized wavelength can be used for good quality assurance and standardization of Phytosil dietary supplements and othermultiherbal preparations.

Keywords


herbal products; natural antioxidants; antioxidant activity; cupric complex; total phenolic content

Full Text:

PDF

References


1. Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of aging. Nature. 2000. 408(6809): 239. https://doi.org/10.1038/35041687

2. Tiwari A.K. Imbalance in antioxidant defense and human diseases: Multiple approach of natural antioxidant therapy. Current Science. 2001. 81(9): 1179.

3. Soobrattee M.A., Neergheen V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat. Res. 2005. 579(1–2): 200. https://doi.org/10.1016/j.mrfmmm.2005.03.023

4. Krishniah D., Sarbatly R., Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011. 89(3): 217.https://doi.org/10.1016/j.fbp.2010.04.008

5. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009. 2(5): 270. https://doi.org/10.4161/oxim.2.5.9498

6. D'Archivio M., Filesi C., Benedetto R., Gargiulo R., Giovannini C., Masella R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita. 2007. 43(4): 348.

7. Nardini M., Natella F., Scaccini C. Role of dietary polyphenols in platelet aggregation. A review of the supplementation studies. Platelets. 2007. 18(3): 224. https://doi.org/10.1080/09537100601078083

8. Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002. 13(10): 572. https://doi.org/10.1016/S0955-2863(02)00208-5

9. Stratil P., Klejdus B., Kuban V. Determination of total content of phenolic compounds and their antioxidant activity in vegetabless - evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006. 54(3): 607. https://doi.org/10.1021/jf052334j

10. Nikolova M. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species. Pharmacognosy Res. 2011. 3(4): 256. https://doi.org/10.4103/0974-8490.89746

11. Wojdylo A., Oszmianski J., Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007. 105(3): 940. https://doi.org/10.1016/j.foodchem.2007.04.038

12. Stef D.S., Gergen I., Trasca T. I., Stef L., Pop C., Harmanescu M., Biron R., Pet E. Evaluation of 33 medicinal plant extracts for the antioxidant capacity and total phenols. J. Food Agric. Environ. 2010. 8(3–4): 207.

13. Tupe R.S., Kemse N.G., Khaire A.A. Evaluation of antioxidant potentials and total phenolic contents of selected Indian herbs powder extracts. Int. Food Res. J. 2013. 20(3): 1053.

14. Antolovich V., Prenzler P.D., Patsalides E., McDonald S., Robards K. Methods for testing antioxidant activity. Analyst. 2002. 127(1): 183. https://doi.org/10.1039/b009171p

15. Roginsky V., Lissi E.A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005. 92(2): 235. https://doi.org/10.1016/j.foodchem.2004.08.004

16. Moon J.K., Shibamoto T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009. 57(5): 1655. https://doi.org/10.1021/jf803537k

17. Karadag A., Oscelic B., Saner S. Review of methods to determine antioxidants capacities. Food Anal. Methods. 2009. 2(2): 41. https://doi.org/10.1007/s12161-008-9067-7

18. Peyrat-Maillard M.N., Bonnely S., Berset C. Determination of the antioxidant activity of phenolic compounds by coulometric detection. Talanta. 2000. 51(4): 709. https://doi.org/10.1016/S0039-9140(99)00331-8

19. PriorR.L., Wu X., Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J.Agric. Food Chem. 2005. 53(10): 4290. https://doi.org/10.1021/jf0502698

20. Simic A., Manojlovic D., Segan D., Todorovic M. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules. 2007. 12(10): 2327. https://doi.org/10.3390/12102327

21. Pisoschi A.M., Negulescu G.P. Methods for total antioxidant activity determination: A Review. Biochem. Anal. Biochem. 2011. 1(1): 106.

22. Miller N.J., Rice-Evans C.A., Davies M.J., Gopinathan V., Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Sci. 1993. 84(4): 407. https://doi.org/10.1042/cs0840407

23. Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft and Technologie. 1995. 28(1): 25. https://doi.org/10.1016/S0023-6438(95)80008-5

24. Akinmoladun A.C., Ibukun E.O., Afor E., Akinrinlola B.L., Onibon T.R., Akinboboye A.O., Obuotor E.M., Farombi E.O. Chemical constituents and antioxidant activity of Alstonia boonei. Afr.J.Biotechnol. 2007. 6(10): 1197.

25. Miliauskas G., Venskutonis P.R., van Beek T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004. 85(2): 231. https://doi.org/10.1016/j.foodchem.2003.05.007

26. Benzie I.F., Szeto Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999. 47(2): 633. https://doi.org/10.1021/jf9807768

27. Pulido R., Bravo L., Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified FRAP assay. J. Agric. Food Chem. 2000. 48(8): 3396. https://doi.org/10.1021/jf9913458

28. Berker K.I., Guclu K., Tor I., Apak R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta. 2007. 72(3): 1157. https://doi.org/10.1016/j.talanta.2007.01.019

29. Berker K.I., Guclu K., Demirata B., Apak R. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Food Anal. Methods. 2010. 2(11): 1770. https://doi.org/10.1039/c0ay00245c

30. Oxis International, I. Antioxidant markers. AOP-490 assay. 2002.

31. Apak R., Guclu K., Demirata B., Ozyurek M., Celik S.E., Bektasoglu B., Berker K.I., Ozyurt D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules. 2007. 12(7): 1496. https://doi.org/10.3390/12071496

32. Apak R., Guclu K., Ozyurek M., Karademir S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproin: CUPRAC method. J. Agric. Food Chem. 2004. 52(12): 7970. https://doi.org/10.1021/jf048741x

33. Apak R., Guclu K., Ozyurek M., Karademir S. E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta. 2008. 160(4): 413. https://doi.org/10.1007/s00604-007-0777-0

34. Zaporozhets O.A., Krushynska O.A., Lipkovska N.A., Sukhan V.V. Solid-phase reagent for analgin and ascorbic acid on the basis of a copper(II) complex with tetrabenzotetraazacyclohexadecine immobilized by adsorption on silica gel. J. Anal. Chem. 2001. 56(6): 524. [in Russian]. https://doi.org/10.1023/A:1016672425484

35. Zaporozhets O.A., Krushynska O.A., Lipkovska N.A., Barvinchenko,V.N. A new test method for the evaluation of total antioxidant activity of herbal products. J. Agric. Food Chem. 2004. 52(1): 21. https://doi.org/10.1021/jf0343480

36. Melson G.A., Busch D.H. Reactions of coordinated ligands X. The formation and properties of a tetradentate macrocyclic ligand by the self-condensation of o-aminobenzaldehide in the presence of metal ions. J. Amer. Chem. Soc. 1964. 86(11): 4834. https://doi.org/10.1021/ja01076a022

37. Technical conditions of Ukraine (TU U 10.8-03291669-018:2013).

38. Zaporozhets O.A., Krushynska O.A., Barvinchenko V.N., Lipkovska N.A., Pogorelyi V.K. Spectrophotometric determination of caffeic acid and its derivatives in echinacea products. Chem.Pharm. J. 2003. 37(12): 47. [in Russian].




DOI: https://doi.org/10.15407/hftp08.01.080

Copyright (©) 2017 N. O. Lipkovska, V. M. Barvinchenko, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.