Chemistry, Physics and Technology of Surface, 2017, 8 (1), 98-103.

Room-temperature NH3 gas sensors based on heterostructures PbS/CdS



DOI: https://doi.org/10.15407/hftp08.01.098

S. L. Prokopenko, G. M. Gunja, S. M. Makhno, P. P. Gorbyk

Abstract


In order to develop sensors capable to detect harmful gases at the ambient temperature, the semiconductor heterostructure PbS/CdS has been synthesized. Formation of CdS nanorods was conducted in the presence of ethylenediamine. An ion-exchange method was used to deposit PbS nanoparticles over the CdS nanorods to produce a large area of the surface heterojunction. Series of samples of with variation in the PbS amount on the CdS surface (from 2.5 to 20mol.%) was obtained. Surface morphology, optical properties and performance characteristics of the PbS/CdS heterostructure gas sensors were studied. The sample performance characteristics were measured by means of change in electric resistance of sensor due to reaction between the surface of material and NH3 in saturated vapours of ammonia. The gas sensor based on the PbS/CdS heterostructures have shorter response and recovery time compared to a sensor based on the CdS solely. It has been shown that with increase in amount of PbS on the CdS surface from 2.5 to 20mol.% the sensor response rate becomes 1.7 times greater.

Keywords


sensor; PbS/CdS heterostructures; ammonia; nanowires

Full Text:

PDF

References


1. Erisman J.W., Sutton M.A., Galloway J., Klimont Z., Winiwarter W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008. 1: 636. https://doi.org/10.1038/ngeo325

2. Durbin T.D., Wilson R.D., Norbeck J.M., Miller J.W., Huai T., Rhee S.H. Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles. Atmos. Environ. 2002. 36(9): 1475. https://doi.org/10.1016/S1352-2310(01)00583-0

3. Tang Y.L., Li Z.J., Ma J.Y., Guo Y.J., Fu Y.Q., Zu X.T. Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens. Actuators, B. 2014. 201: 114. https://doi.org/10.1016/j.snb.2014.04.046

4. Ament W., Huizenga J.R., Kort E., Mark T.W. van der, Grevink R.G., Verkerke G.J. Respiratory ammonia output and blood ammonia concentration during incremental exercise. Int. J. Sports Med. 1999. 20(2): 71. https://doi.org/10.1055/s-2007-971096

5. Wang S.Y., Ma J.Y., Li Z.J., Su H.Q., Alkurd N.R., Zhou W.L., Wang L., Du B., Tang Y.L., Ao D.Y., Zhang S.C., Yu Q.K., Zu Xiao-Tao Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J. Hazard. Mater. 2015. 285: 368. https://doi.org/10.1016/j.jhazmat.2014.12.014

6. Kim I.D., Rothschild A., Tuller H.L. Advances and new directions in gas-sensing devices. Acta. Mater. 2013. 61(3): 974. https://doi.org/10.1016/j.actamat.2012.10.041

7. Comini E., Baratto C., Concina I., Faglia G., Falasconi M., Ferroni M., Galstyan V., Gobbi E., Ponzoni A., Vomiero A., Zappa D., Sberveglieri V., Sberveglieri G. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators, B. 2013. 179: 3. https://doi.org/10.1016/j.snb.2012.10.027

8. Zhao Q., Hou L., Huang R., Li S. Surfactant-assisted growth and characterization of CdS nanorods. Inorg. Chem. Commun. 2003. 6(12): 1459. https://doi.org/10.1016/j.inoche.2003.09.010

9. Zhou H. S., Honma I., Komiyama H., Haus J. W. Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system's synthesis and properties. J. Phys. Chem. 1993. 97(4): 895. https://doi.org/10.1021/j100106a015

10. Zhou H. S., Sasahara H., Honma I., Komiyama H., Haus J. W. Coated semiconductor nanoparticles: the CdS/PbS system's photoluminescence properties. Chem. Mater. 1994. 6(9): 1534. https://doi.org/10.1021/cm00045a010

11. Liu B., Chew C. H., Gan L. M., Xu G. Q., Li H. P., Lam Y. L., Kam C. H., Que W. X. Third-order nonlinear optical response in PbS-coated CdS nanocomposites. J. Mater. Res. 2001. 16(06): 1644. https://doi.org/10.1557/JMR.2001.0228

12. Yadav S.K., Jeevanandam P. Thermal decomposition approach for the synthesis of CdS-TiO2 nanocomposites and their catalytic activity towards degradation of rhodamine B and reduction of Cr(VI). Ceram Int. 2015. 41(2): 2160. https://doi.org/10.1016/j.ceramint.2014.10.016

13. Schoolar R.B., Dixon J.R. Optical Constants of Lead Sulfide in the Fundamental Absorption Edge Region Phys. Rev. A. 1965. 137(2): 667.

14. Balamurugan C., Lee D.-W. A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B. 2014. 192: 414. https://doi.org/10.1016/j.snb.2013.10.085

15. Modafferi V., Panzera G., Donato A., Antonucci P.L., Cannilla C., Donato N., Spadaro D., Neri G. Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens. Actuators B. 2012. 163: 61. https://doi.org/10.1016/j.snb.2012.01.007

16. Deng J.N., Zhang R., Wang L.L., Lou Z., Zhang T. Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens. Actuators, B. 2015. 209: 449. https://doi.org/10.1016/j.snb.2014.11.141

17. Morrison S.R., Madou M.J. Chemical Sensing with Solid State Devices. (London: Academic Press, 1989).

18. Pengfeng Guo, Haibo Pan Selectivity of Ti-doped In2Oceramics as an ammonia sensor. Sens. Actuators B. 2006. 114: 762. https://doi.org/10.1016/j.snb.2005.07.040

19. Mani G.K., Bosco J., Rayappan B. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B. 2013. 183: 459. https://doi.org/10.1016/j.snb.2013.03.132

20. Tulliani J.-M., Cavalieri A., Musso S., Sardella E. Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators B. 2011. 152: 144. https://doi.org/10.1016/j.snb.2010.11.057

21. Takao Y., Miyazaki K., Shimizu Y., Egashira M. High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes. J. Electrochem. Soc. 1994. 141: 1028. https://doi.org/10.1149/1.2054836




DOI: https://doi.org/10.15407/hftp08.01.098

Copyright (©) 2017 S. L. Prokopenko, G. M. Gunja, S. M. Makhno, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.