Chemistry, Physics and Technology of Surface, 2020, 11 (3), 420-428.

A study on the interaction of N–acetylneyramic acid with monosaccharides adsorpbted on ultrafine silica surface



DOI: https://doi.org/10.15407/hftp11.03.420

L. M. Ushakova, E. M. Demianenko, M. I. Terets, V. V. Lobanov, N. T. Kartel

Abstract


Nowadays, it is relevant to study the processes that occur at the boundary of biomolecule (cell)-nanoparticle phase distribution. There is a growing interest in studying the interaction of ultrafine silica (UFC) with saccharides, in particular glucose and fructose, as well as with N-acetylneuraminic acid (NANA) (which is а part of the body’s cell membrane), for further creation of nanocomposites with biomolecules to use in biological systems. Using the density functional theory method (DFT) within the polarization continuum model (PCM), the interaction peculiarities of monosaccharides with silica surface were examined and the influence of the NANA molecule on this process was determined. The results of the analysis of quantum chemical calculations indicate that glucose and fructose can be used as modifiers for NANA adsorption. The molecules of these carbohydrates are related to silica surface and form a complex with N-acetylneuraminic acid. It is found that hydrogen bonds between hydroxyl groups of carbohydrates and silanol groups of the UFC surface play a major part in the formation of intermolecular complexes. The calculations show that the adsorption of monosaccharides on silica surface is possible considering their location, and it also depends on how to carry out the adsorption. That is, whether the adsorption of saccharides and then of NANA, or the adsorption from monosaccharides-NANA solution on silica surface is sequential.


Keywords


glucose; fructose; silica surface; adsorption; density functional theory method; cluster approach

Full Text:

PDF

References


1. Kulyk T.V., Palyanytsya B.B., Halahan N.P. Molecular self-organization in nano-sized particles - carbohydrates. Nanosystems, Nanomaterials, Nanotechnologies. 2003. 1(2): 681. [in Ukrainian].

2. Nosach L.V. Comparison of the efficiency of modification of nanosilicon by saccharides in liquid and gaseous dispersion media. Surface. 2014. 6(21): 83. [in Ukrainian].

3. Voronin E.F., Nosach, L.V. Gun'ko V.M., Charmas B. Geometric and mechano-sorption modification of fumed nanosilica in the gaseous dispersion media. Physics and Chemistry of Solid State. 2019. 20(1): 22. https://doi.org/10.15330/pcss.20.1.26

4. Galagan N.P., Patey L.M., Nastasienko N.S., Gritsenko I.V., Orel I.L., Mischanchuk O.V., Pokrovsky V.O., Chuiko O.O. Nanocomposites based on highly dispersed silica and biomolecules and their thermal transformations. Nanosystems, Nanomaterials, Nanotechnologies. 2006. 3(4): 599. [in Ukrainian].

5. Tsendra O.M., Lobanov V.V., Grebenyuk A.G. Hydration effects and structure of the adsorption complexes of glucose on silica surface. Chemistry physics and surface technology. 2004. 10: 8. [in Ukrainian].

6. Tsendra O.M., Lobanov V. V. The mechanism of saccharide film formation on the surface of nanosized silica. Physics and Chemistry of Solid State. 2006. 7(1): 93.

7. Tsendra O., Lobanov V., Grebenyuk A., Terets M. Quantum chemical simulation of the interaction of silica surface with carbohydrates of plasmatic membrane. NaUKMA Research Papers. Biology and Ecology Chemical sciences and Technological. 2003. 21: 13.

8. Becke A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913

9. Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785

10. Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011. 1(2): 211. https://doi.org/10.1002/wcms.30

11. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759

12. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

13. Tomasi J., Mennucci B., Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005. 105(8): 2999. https://doi.org/10.1021/cr9904009

14. Cossi M., Barone V., Cammi R., Tomasi J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996. 255(4-6): 327. https://doi.org/10.1016/0009-2614(96)00349-1

15. Jensen F. Introduction to Computational Chemistry. (Odense: John Wiley & Sons, 2007)

16. Murrell J.N., Laidler K.J. Symmetries of activated complexes. Trans. Faraday Soc. 1968. 64: 371. https://doi.org/10.1039/tf9686400371

17. Smith M. B. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. (8th Edition Wiley, 2019).




DOI: https://doi.org/10.15407/hftp11.03.420

Copyright (©) 2020 L. M. Ushakova, E. M. Demianenko, M. I. Terets, V. V. Lobanov, N. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.