Chemistry, Physics and Technology of Surface, 2021, 12 (1), 40-51.

Encapsulation of benzene carboxylic acids using cyclodextrins



DOI: https://doi.org/10.15407/hftp12.01.040

L. A. Belyakova

Abstract


The encapsulation of medicinal substances in various polymers is a common way to increase their thermal, hydrolytic, and chemical stability. However, the bioavailability of the encapsulated drugs decreases. The solution to this important problem can be the preparation of nanocapsules of medicinal substances using complexing agents, for example, cyclodextrins.

The purpose of this work is to study the possibility of encapsulation of benzoic, salicylic, and β-resorcylic acids using α- and β-cyclodextrins. The interaction of benzene carboxylic acids with cyclodextrins in aqueous solutions at 20–30 оС has been studied by spectrophotometry. The formation of complexes with a composition of 1:1 in the cyclodextrin – benzene carboxylic acid systems has been proven. The stability constants of the complexes and the main thermodynamic parameters of complex formation have been calculated. It has been shown that the nature of changes in the spectral characteristics of benzene carboxylic acids in the presence of cyclodextrins can be used to predict the possibility of aromatic organic compounds encapsulation. The determining role of the complementarity of geometric parameters of cyclodextrins and benzene carboxylic acids in the preparation of inclusion complexes with features of nanocapsules has been found. The prospects of using β-cyclodextrin for encapsulation of benzene carboxylic acids have been demonstrated.

The complexes of β-cyclodextrin with benzene carboxylic acids were synthesized and studied by IR spectroscopy, X-ray analysis and derivatography. The formation of two types of  complexes in the β-cyclodextrin – benzene carboxylic acid system was established. The first type of complexes is formed due to nonspecific interactions between the hydrophobic cavity of β-cyclodextrin and the benzene carboxylic acid molecule, the second type is due to specific interactions between the functional groups of molecules. Benzoic and salicylic acids form nanocapsules with β-cyclodextrin, and their hydrolytic and thermal stability increases. Complexes of the second type acquire the properties of a new compound: β-resorcylic acid loses its individuality, forming strong supramolecular structures with β-cyclodextrin.


Keywords


supramolecular chemistry; encapsulation; benzene carboxylic acid; α- and β-cyclodextrins; “host-guest” inclusion complexes; spectrophotometry; IR spectroscopy; X-ray analysis; derivatography

Full Text:

PDF (Українська)

References


1. Irie T., Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safely evaluation. J. Pharm. Sci. 1997. 86(2): 147. https://doi.org/10.1021/js960213f

2. Hedges A.R. Industrial applications of cyclodextrins. Chem. Rev. 1998. 98(5): 2035. https://doi.org/10.1021/cr970014w

3. Hirayama F., Uekama K. Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 1999. 36(1): 125. https://doi.org/10.1016/S0169-409X(98)00058-1

4. Bilensoy E. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine. (Hoboken: Wiley, 2001).

5. Challa R., Ahuja A., Ali J., Khar R. Cyclodextrins in drug delivery: an updated review. AAPS Pharm. Sci. Tech. 2005. 6(2): 329. https://doi.org/10.1208/pt060243

6. Loftsson T., Jarho P., Masson M., Jarvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005. 2(2): 335. https://doi.org/10.1517/17425247.2.1.335

7. Cravotto G., Binello A., Baranelli E., Carraro P., Trotta F. Cyclodextrins as food additives and in food processing. Curr. Nutr. Food Sci. 2006. 2(4): 343. https://doi.org/10.2174/157340106778699485

8. Brewster M.E., Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 2007. 59(7): 645. https://doi.org/10.1016/j.addr.2007.05.012

9. Loftsson T., Duchene D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007. 329(1): 1. https://doi.org/10.1016/j.ijpharm.2006.10.044

10. Astray G., Gonzalez-Barreir C., Mejuto J., Rial-Otero R., Simal-Gandara J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009. 23(7): 1631. https://doi.org/10.1016/j.foodhyd.2009.01.001

11. Loftsson T., Brewster M.E. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 2012. 101(9): 3019. https://doi.org/10.1002/jps.23077

12. Martina K., Binello A., Lawson D., Jicsinszky L., Cravotto G. Recent applications of cyclodextrins as food additives and in food processing. Curr. Nutr. Food Sci. 2013. 9(3): 167. https://doi.org/10.2174/1573401311309030001

13. Zhang J., Ma P.X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 2013. 65(9): 1215. https://doi.org/10.1016/j.addr.2013.05.001

14. Suzuki R., Inoue Y., Tsunoda Y., Murata I., Isshiki Y., Kondo S., Kanamoto I. Effect of γ-cyclodextrin derivative complexation on the physicochemical properties and antimicrobial activity of hinokitiol. J. Incl. Phenom. Macrocycl. Chem. 2015. 83(1-2): 177. https://doi.org/10.1007/s10847-015-0557-0

15. Di Cagno M.P. The potential of cyclodextrins as novel active pharmaceutical ingredients: a shot overview. Molecules. 2016. 22(1): 1. https://doi.org/10.3390/molecules22010001

16. Lehn J.-M. Supramolecular Chemistry. Concepts and Perspectives. (Weinheim-New York-Basel-Cambridge-Tokyo: VCH Verlagsgesellschaf, 1995).

17. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998. 98(5): 1743. https://doi.org/10.1021/cr970022c

18. Steed J.W., Atwood J.L. Supramolecular Chemistry. (Chichester-New York-Weinheim-Brisbano-Singapore-Toronto: John Wiley & Sons, 2000).

19. Dodziuk H. Cyclodextrins and Their Complexes. (Weinheim: Wiley-VCH GmbH&Co, 2006). https://doi.org/10.1002/3527608982

20. Albers E., Muller B.W. Complexation of steroid hormones with cyclodextrin derivatives: substituent effects of the guest molecule on solubility and stability in aqueous solution. J. Pharm. Sci. 1992. 81(8): 756. https://doi.org/10.1002/jps.2600810808

21. Comini S., Olivier P., Riottot M., Duhamel D. Interaction of β-cyclodextrin with bile acids and their competition with vitamins A and D3 as determined by 1H-NMR spectrometry. Clin. Chim. Acta. 1994. 228(2): 181. https://doi.org/10.1016/0009-8981(94)90288-7

22. Delaurent C., Siouffi A.M., Pepe G. Cyclodextrin inclusion complexes with vitamin D3: investigations of the solid complex characterization. Chem. Anal. 1998. 43(4): 601.

23. De Azevedo M.B.M., Zullo M.A.T., Alderete J.B., De Azevedo M.M.M., Salva T.J.G., Duran N. Characterisation and properties of the inclusion complex of 24-epibrassinolide with beta-cyclodextrin. Plant Growth Regul. 2002. 37(3): 233. https://doi.org/10.1023/A:1020842727497

24. De Hassonville S.H., Perly B., Piel G., Van Hees T., Barillaro V., Bertholet P., Delattre L., Evrard B. Inclusion complexes of cyproterone acetate with cyclodextrins in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 2003. 44(1-4): 289. https://doi.org/10.1023/A:1023099611604

25. Wu H., Liang H., Yuan Q., Wang T., Yan X. Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 2010. 82(3): 613. https://doi.org/10.1016/j.carbpol.2010.05.020

26. Caira M.R., Bourne S.A., Samsodien H., Smith V.J. Inclusion complexes of 2-methoxyestradiol with dimethylated and permethylated β-cyclodextrins: models for cyclodextrin-steroid interaction. Beilstein J. Org. Chem. 2015. 11: 2616. https://doi.org/10.3762/bjoc.11.281

27. Mashkovskii M.D. Pharmaceuticals. (Moscow: Novaya Volna, 2000). [in Russian].

28. Chuiko A.A. (Ed.) Medical Chemistry and Clinical Application of Silicon Dioxide. (Kyiv: Naukova Dumka, 2003). [in Russian].

29. Belyakova L.A., Varvarin A.M., Lyashenko D.Yu., Chora O.V., Oranska O.I. Complexation in a β-cyclodextrin - salicylic acid system. Colloid J. 2007. 69(5): 546. https://doi.org/10.1134/S1061933X0705002X

30. Belyakova L.A., Varvarin A.M., Chora O.V., Oranska O.I. The interaction of β-cyclodextrin with benzoic acid. Russ. J. Phys. Chem. A. 2008. 82(5): 821.

31. Belyakova L.A., Lyashenko D.Yu., Dziazko M.O., Oranska O.I., Gornikov Yu.I. Formation of supramolecular structures in the β-cyclodextrin - β-resorcylic acid system. J. Applied Spectroscopy. 2017. 84(3): 466. https://doi.org/10.1007/s10812-017-0493-4

32. Ternay A.L. Contemporery Organic Chemistry. (Philadelphia: W.B. Sanders Company, 1979).

33. Rao C.N.R. Ultra-Violet and Visible Spectroscopy Chemical Applications. (London: Butterworths, 1961).

34. Brand J.C.D., Eglinton G. Applications of Spectroscopy in Organic Chemistry. (London: Oldbourne Press, 1965).

35. Sverdlova O.V. Electronic Spectra in Organic Chemistry. (Leningrad: Khimiya, 1973). [in Russian].

36. Smith A.L. Applied Infrared Spectroscopy. (New York: John Wiley & Sons, 1982).

37. Belyakov V.N., Belyakova L.A., Varvarin A.M., Khora O.V., Vasilyuk S.L., Kazdobin K.A., Maltseva T.V., Kotvitskyy A.G., Danil de Namor A.F. Supramolecular structures onto silica surface and their adsorption properties. J. Colloid Interface Sci. 2005. 285: 18. https://doi.org/10.1016/j.jcis.2004.11.027




DOI: https://doi.org/10.15407/hftp12.01.040

Copyright (©) 2021 L. A. Belyakova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.