Chemistry, Physics and Technology of Surface, 2022, 13 (1), 47-59.

Confined space effects on various liquids interacting with fumed nanooxides and porous silicas



DOI: https://doi.org/10.15407/hftp13.01.047

V. M. Gun'ko

Abstract


Interfacial phenomena at a surface of porous and highly disperse adsorbents in the systems containing strongly and weakly bound and unbound liquids depend strongly on the confined space effects. These effects as well as the temperature behavior of liquids located in pores or voids between nanoparticles depend on many factors. They are the pore size distributions, pore volume, specific surface area, surface chemistry of adsorbents, chemical structure and molecular sizes of adsorbates, accessibility of pores vs. probe molecule sizes, as well as textural instability of adsorbents. This instability can appear, e.g., as compaction of fumed oxides under action of liquid adsorbates, especially water, or due to mechanochemical activation. The aim of this study is to analyze features of the interfacial phenomena upon interactions of fumed oxides (silica, alumina, alumina/silica/titania) and porous silicas (silica gels and precipitated silica) with polar (water, dimethyl sulfoxide), weakly polar (chloroform), and nonpolar (n-decane, aromatic benzene and toluene) liquid adsorbates depending on the morphological and textural characteristics of the adsorbents, various adsorbate characteristics, and temperature. The observed effects as well as related phenomena are important because they can differently influence the efficiency of practical applications of adsorbents under various conditions (temperature, pressure, concentrations) depending on the characteristics of adsorbents and adsorbates (liquids, solvents and solutes).


Keywords


fumed oxides; porous silicas; confined space effects; interfacial phenomena; bound liquids freezing/melting

Full Text:

PDF

References


Somasundaran P. Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3

Yang R.T. Adsorbents: Fundamentals and Applications. (New York: Wiley, 2003). https://doi.org/10.1002/047144409X

Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).

Slejko F.L. Adsorption Technology: A Step-by-Step Approach to Process Evaluation and Application. (New York: Marcel Dekker Inc., 1985).

Birdi K.S. Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/9781420007206

Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).

Basic Characteristics of AEROSIL® Fumed Silica. Technical Bulletin Fine Particles. N 11. (Hanau: Evonik Industries AG, 2006).

Lu K. Nanoparticulate Materials. Synthesis, Characterization, and Processing. (Hoboken, New Jersey: John Wiley & Sons, Inc., 2013).

Moreno-Piraján J.C., Giraldo-Gutierrez L., Gómez-Granados F. Porous Materials Theory and Its Application for Environmental Remediation. (Cham: Springer Nature, 2021). https://doi.org/10.1007/978-3-030-65991-2

Rousseau R.W. Handbook of Separation Process Technology. (New York: John Wiley & Sons, 1987).

Schweitzer P.A. Handbook of Separation Techniques for Chemical Engineers. 2nd ed. (New York: McGraw-Hill Inc., 1988).

Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).

Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).

Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706

Tapia O., Bertrán J. Solvent Effects and Chemical Reactivity. (New York: Kluwer Academic Publishers, 2000).

Henderson M.A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002. 46(1): 1. https://doi.org/10.1016/S0167-5729(01)00020-6

Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 2003. 52(3-4): 63. https://doi.org/10.1016/j.surfrep.2003.09.001

Auroux A. Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top. Catal. 2002. 19(3): 205.

Campbell C.T., Sellers J.R.V. Enthalpies and entropies of adsorption on well-defined oxide surfaces: Experimental measurements. Chem. Rev. 2013. 113(6): 4106. https://doi.org/10.1021/cr300329s

Eder F., Lercher J.A. On the role of the pore size and tortuosity for sorption of alkanes in molecular sieves. J. Phys. Chem. B. 1997. 101(8): 1273. https://doi.org/10.1021/jp961816i

Gounder R., Iglesia E. The catalytic diversity of zeolites: Confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 2013. 49(34): 3491. https://doi.org/10.1039/c3cc40731d

Chorkendorff I., Niemantsverdriet J.W. Concepts of Modern Catalysis and Kinetics. (Weinheim: John Wiley & Sons, 2006).

Dauenhauer P.J., Abdelrahman O.A. A universal descriptor for the entropy of adsorbed molecules in confined spaces. ACS Cent. Sci. 2018. 4(9): 1235. https://doi.org/10.1021/acscentsci.8b00419

Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).

Wypych G. Handbook of Solvents. (Toronto: ChemTec Publishing, 2001).

Kammerhofer J. Capillary Wetting of Heterogeneous Powders. 1st edn. (Göttingen: Cuvillier Verlag, 2019).

Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003

Brunelli A., Pojana G., Callegaro S., Marcomini A. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J. Nanopart. Res. 2013. 15(6): 1684. https://doi.org/10.1007/s11051-013-1684-4

Canesi L., Ciacci C., Vallotto D., Gallo G., Marcomini A., Pojana G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat. Toxicol. 2010. 96(2): 151. https://doi.org/10.1016/j.aquatox.2009.10.017

D'Agata A., Salvatore F., Dallas L.J., Fisher A.S., Maisano M., Readman J.W., Jha A.N. Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology. 2014. 8(5): 549. https://doi.org/10.3109/17435390.2013.807446

Srikanth K., Mahajan A., Pereira E., Duarte A.C., Rao J.V. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells. J. Appl. Toxicol. 2015. 35(10): 1133. https://doi.org/10.1002/jat.3142

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3. https://doi.org/10.15407/Surface.2019.11.003

Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413

Turov V.V., Gun'ko V.M., Pakhlov E.M., Krupska T.V., Tsapko M.D., Charmas B., Kartel M.T. Influence of hydrophobic nanosilica and hydrophobic medium on water bound in hydrophilic components of complex systems. Colloids Surf., A. 2018. 552: 39. https://doi.org/10.1016/j.colsurfa.2018.05.017

Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Marynin A.I., Ukrainets A.I., Charmas B., Skubiszewska-Zięba J., Blitz J.P. Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2017. 423: 855. https://doi.org/10.1016/j.apsusc.2017.06.207

Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid Interface Sci. 2011. 355(2): 300. https://doi.org/10.1016/j.jcis.2010.12.008

Turov V.V., Gun'ko V.M., Zarko V.I., Goncharuk O.V., Krupska T.V., Turov A.V., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range. Langmuir. 2013. 29(13): 4303. https://doi.org/10.1021/la400392h

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids Surf., A. 2016. 492: 230. https://doi.org/10.1016/j.colsurfa.2015.12.030

Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001

Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Progr. NMR Spectroscopy. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001

Aksnes D.W., Førland K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR. Phys. Chem. Chem. Phys. 2001. 3(15): 3203. https://doi.org/10.1039/b103228n

Hay J.N., Laity P.R. Observations of water migration during thermoporometry studies of cellulose films. Polymer. 2000. 41(16): 6171. https://doi.org/10.1016/S0032-3861(99)00828-9

Landry M.R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim. Acta. 2005. 433(1-2): 27. https://doi.org/10.1016/j.tca.2005.02.015

Weber J., Bergström L. Mesoporous hydrogels: revealing reversible porosity by cryoporometry, X-ray scattering, and gas adsorption. Langmuir. 2010. 26(12): 10158. https://doi.org/10.1021/la100290j

Gun'ko V.M., Oranska O.I., Paientko V.V., Sulym I.Ya. Particulate morphology of nanostructured materials. Him. Fiz. Tehnol. Poverhni. 2020. 11(3): 368. https://doi.org/10.15407/hftp11.03.368

Gun'ko, V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163

Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171.https://doi.org/10.1016/j.apsusc.2018.07.213

Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317

Gun'ko V.M. Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 5. https://doi.org/10.15407/hftp11.01.005

Gun'ko V.M. Polymer adsorbents vs. functionalized oxides and carbons: particulate morphology and textural and surface characterization. Polymers. 2021. 13(1249): 1. https://doi.org/10.3390/polym13081249

ImageJ. Version 1.53m. 2021. https://imagej.nih.gov/ij/, https://imagej.nih.gov/ij/plugins/granulometry.html

Fiji. 2021. https://fiji.sc/, https://imagej.net/local_thickness

Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117

Gun'ko V.M., Matkovsky A.K., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Carbon-silica gel adsorbents: effects of matrix structure and carbon content on adsorption of polar and nonpolar adsorbates. J. Therm. Anal. Calorim. 2017. 128(3): 1683. https://doi.org/10.1007/s10973-017-6097-7




DOI: https://doi.org/10.15407/hftp13.01.047

Copyright (©) 2022 V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.