Chemistry, Physics and Technology of Surface, 2023, 14 (4), 534-545.

Theoretical study on the interaction of polychlorotrifluoroethylene fragments with graphene-like planes



DOI: https://doi.org/10.15407/hftp14.04.534

Yu. V. Hrebelna, E. M. Demianenko, M. I. Terets, A. G. Grebenyuk, Yu. I. Sementsov, N. V. Sigareva, S. M. Makhno, M. T. Kartel

Abstract


The interaction of graphene with fragments of polychlorotrifluoroethylene (PCTFE) has been studied by quantum chemistry methods. Within the frameworks of the density functional theory with B3LYP exchange-correlation functional, 6-31G(d,p) basis set and the Grimme dispersion correction, and the second order Møller-Plesset perturbation theory (MP2), the values of the interaction energy of graphene with polychlorotrifluoroethylene oligomers were calculated and the most probable structures of their intermolecular complexes were optimized. As a graphene model, graphene-like planes (GLP) of different sizes were chosen, namely: С40Н16, С54Н18 and С96Н24.

Oligomers of polychlorotrifluoroethylene and graphene-like planes in the formed nanocomposites are located closer to each other than individual polymer links.

When comparing the results of calculations by the B3LYP-D3/6-31G(d,p) and MP2/6-31G(d,p) methods, both in the case of interactions of polychlorotrifluoroethylene oligomers with each other and intermolecular complexes of polychlorotrifluoroethylene oligomers and graphene-like planes, it has been found that the second order Møller-Plesset method is characterized by a larger intermolecular distance and a lower energy of intermolecular interactions compared to the method of the density functional theory with the Grimme dispersion correction, which is explained by the fact that the MP2 method does not fully take into account the relatively small components of dispersion interactions.

Analysis of the calculation results using quantum chemistry methods shows that the addition of graphene-like planes to the polychlorotrifluoroethylene polymer leads to an increase in the intermolecular interaction energy, regardless of the calculation method used and the sizes of polychlorotrifluoroethylene oligomers and graphene-like planes. This may indicate greater strength and thermal stability of the nanocomposite based on graphene-like planes with polychlorotrifluoroethylene oligomers.

The zero value of the Gibbs free energy ΔGreact for the interaction of two dimers with each other is characteristic at 270 K, and the similar value of the interaction of the PCTFE dimer with GLP is at a much higher temperature (420 K). This fact reflects the growth in thermostability of nanocomposites as compared to the polymer itself.


Keywords


nanocomposite; graphene, graphene-like plane; polychlorotrifluoroethylene; density functional theory method; cluster approximation

Full Text:

PDF

References


1. Sun X., Huang C., Wang L., Liang L., Cheng Y., Fei W., Li Y. Recent Progress in Graphene/Polymer Nanocomposites. Adv. Mater. 2020. 33(6): 2001105. https://doi.org/10.1002/adma.202001105

2. Sheeparamatti B.G., Sheeparamatti R.B. Nanotechnology: Inspiration from Nature. IETE Technical Review. 2007. 24(1): 5.

3. Ahmad S.I., Hamoudi H., Abdala A., Ghouri Z.K., Youssef K.M. Graphene-reinforced bulk metal matrix composites: synthesis, microstructure, and properties. Rev. Adv. Mater. Sci. 2020. 59: 67. https://doi.org/10.1515/rams-2020-0007

4. Wang J., Zhou J., Hu Y., Regier T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 2013. 6(3): 926. https://doi.org/10.1039/c2ee23844f

5. Jia Z., Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. J. Mater. Chem. A. 2015. 3(8): 4405. https://doi.org/10.1039/C4TA06193D

6. Xing W., Li H., Huang G., Cai L., Wu J. Graphene oxide induced crosslinking and reinforcement of elastomers. Compos. Sci. Technol. 2017. 144: 223. https://doi.org/10.1016/j.compscitech.2017.03.006

7. Camargo P.H.C., Satyanarayana K.G., Wypych F. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Mater. Res. 2009. 12(1): 1. https://doi.org/10.1590/S1516-14392009000100002

8. Zeranska-Chudek K., Lapinska A., Wroblewska A., Judek J., Duzynska A., Pawlowski M., Witowski A.M., Zdrojek M. Study of the absorption coefficient of graphene-polymer composites. Sci. Rep. 2018. 8(1): 9132. https://doi.org/10.1038/s41598-018-27317-0

9. Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007. 6: 183. https://doi.org/10.1038/nmat1849

10. Sahu D., Sutar H., Senapati P., Murmu R., Roy D. Graphene, graphene-derivatives and composites: fundamentals, synthesis approaches to applications. J. Compos. Sci. 2021. 5(7): 181. https://doi.org/10.3390/jcs5070181

11. Li Z., Fu X., Guo Q., Zhao L., Fan G., Li Z., Xiong D.B., Su Y., Zhang D. Graphene quality dominated interface deformation behavior of graphene-metal composite: The defective is better. Int. J. Plast. 2018. 111: 253. https://doi.org/10.1016/j.ijplas.2018.07.020

12. Hu Z., Tong G., Lin D., Chen C., Guo H., Xu J., Zhou L. Graphene-reinforced metal matrix nanocomposites - a review. Mater. Sci. Technol. 2016. 32(9): 930. https://doi.org/10.1080/02670836.2015.1104018

13. Muxi L., Yuhong Z., Liwen C., Jianquan L., Ting Z., Hua H. Research progress on preparation technology of graphene-reinforced aluminum matrix composites. Mater. Res. Express. 2019. 6(3): 032002. https://doi.org/10.1088/2053-1591/aaf4a5

14. Lau K.T. Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 2003. 370(3-4): 399.

https://doi.org/10.1016/S0009-2614(03)00100-3

15. Makhno S., Gunya G., Sementsov Y., Grebelna Y., Kartel M., Lisova O. The properties of synthesized graphene and polychlorotrifluoroethylene - graphene systems. Physics and Chemistry of Solid State. 2016. 17(3): 421. https://doi.org/10.15330/pcss.17.3.421-425

16. Yi L., Guiqi F., Tianyu W., Haimu Y. Effect of graphite microsheets on crystallization and properties of polychlorotrifluoroethylene[J]. China Plastics. 2023. 37(1): 18.

17. Liang C.Y., Krimm S. Infrared Spectra of High Polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene. J. Chem. Phys. 1956. 25: 563. https://doi.org/10.1063/1.1742964

18. Li Y., Wen J., Wu T., Cao Ch., Meng X., Ye H. Mechanical properties and microstructure of polychlorotrifluoroethylene toughened by polyamide 11 based on intermolecular interaction. J. Appl. Polym. Sci. 2022. 39(42): e53028. https://doi.org/10.1002/app.53028

19. Price F.P. The development of crystallinity in polychlorotrifluoroethylene. J. Am. Chem. Soc. 1952. 74(2): 311. https://doi.org/10.1021/ja01122a006

20. Watkins J.J., Mecarthy T.J. Polymerization of styrene in supercritical CO2-Swollen Poly(chlorotrifluoroethylene). Macromolecules. 1995. 28: 4067. https://doi.org/10.1021/ma00116a004

21. Dias A.J., McCarthy T.J. Surface modification of poly(chlorotrifluoroethylene) with methyllithium. Macromolecules. 1985, V. 18(10): 1826. https://doi.org/10.1021/ma00152a006

22. Miyamoto Y. Crystallization of Poly(chlorotrifluoroethylene). Polym. J. 1972. 3(2): 122. https://doi.org/10.1295/polymj.3.122

23. Cheng G., Chen B., Guo F., Xiang C., Jia X. Research on the friction and wear mechanism of a polymer interface at low temperature based on molecular dynamics simulation. Tribol. Int. 2023. 183: 108396. https://doi.org/10.1016/j.triboint.2023.108396

24. Zou J., Zhang M., Huang M., Zhao D., Dai Y. Structure, properties, and modification of polytrifluorochloroethylene: a review. Front. Mater. 2022. 9: 824155. https://doi.org/10.3389/fmats.2022.824155

25. Scott A.H., Scheiber D.J., Curtis A.J., Lauritzen Jr. J.I., Hoffman J.D. Dielectric properties of semicrystalline polychlorotrifluoroethylene. J. Res. Natl. Bur. Stand. A. Phys. Chem. 1962. 66A(4): 269. https://doi.org/10.6028/jres.066A.028

26. Ahangari M.G., Fereidoon A., Ganji M.D. Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties. J. Mol. Model. 2013. 19: 3127. https://doi.org/10.1007/s00894-013-1852-6

27. Zhang Q., Zhao X., Sui G., Yang X. Surface sizing treated MWCNTs and its effect on the wettability, interfacial interaction and flexural properties of MWCNT/Epoxy nanocomposites. Nanomaterials. 2018. 8(9): 680. https://doi.org/10.3390/nano8090680

28. Terets M.I., Demianenko E.M., Zhuravsky S.V., Chernyuk O.A., Kuts V.S., Grebenyuk A.G., Sementsov Yu.I., Kokhtych L.M., Kartel M.T. Quantum chemical study on the interaction of carbon nanotube with polyethylene and polypropylene oligomers. Him. Fiz. Tehnol. Poverhni. 2019. 10(1): 75. https://doi.org/10.15407/hftp10.01.075

29. Demianenko E.M., Terets M.I., Sementsov Yu.I., Makhno S.M., Kuts V.S., Grebenyuk A.G., Kartel M.T. Theoretical study on the effect of carbon graphenous nanoclusters on the stability and capacity of polyamide in a nanocomposite. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 355. https://doi.org/10.15407/hftp10.04.355

30. Kartel M., Sementsov Yu., Dovbeshko G., Karachevtseva L., Makhno S., Aleksyeyeva T., Grebel'na Yu., Styopkin V., Bo W., Stubrov Y. Lamellar structures from graphene nanoparticles produced by anode oxidation. Adv. Mater. Lett. 2017. 8(3): 212. https://doi.org/10.5185/amlett.2017.1428

31. Becke A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913

32. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785

33. Barca G., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S., Li H., Li W., Lutz J.J., Magoulas I., Mato J., Mironov V. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152: 154102. https://doi.org/10.1063/5.0005188

34. Jackson K., Jaffar S.K., Paton R.S. Computational Organic Chemistry. Annual Reports Section B Organic Chemistry. 2013. 109: 235. https://doi.org/10.1039/c3oc90007j

35. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759

36. Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011. 1(2): 211. https://doi.org/10.1002/wcms.30

37. Head-Gordon M., Pople J.A., Frisch M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988. 153(6): 503. https://doi.org/10.1016/0009-2614(88)85250-3

38. Mylvaganam K., Zhang L.C. Chemical bonding in polyethylene−nanotube composites: A Quantum Mechanics Prediction. J. Phys. Chem. B. 2004. 108(17): 5217. https://doi.org/10.1021/jp037619i

39. Wales D.J., Berry R.S. Limitations of the Murrell-Laidler theorem. J. Chem. Soc. Faraday Trans. 1992. 88(4): 543. https://doi.org/10.1039/FT9928800543

40. Lodge T.P., Muthukumar M. Physical chemistry of polymers: entropy, interactions, and dynamics. J. Phys. Chem. 1996. 100(31): 13275. https://doi.org/10.1021/jp960244z

41. Yang Y., Ding X., Urban M.W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 2015. 49-50: 34. https://doi.org/10.1016/j.progpolymsci.2015.06.001

42. Karton A. Relative energies of increasingly large [n]helicenes by means of high-level quantum chemical methods. Mol. Phys. 2023. DOI: 10.1080/00268976.2023.2241927. https://doi.org/10.1080/00268976.2023.2241927

43. Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017. 19(48): 32184. https://doi.org/10.1039/C7CP04913G

44. Makhno S.M., Lisova O.M., Mazurenko R.V., Gorbyk P.P., Ivanenko K.O., Kartel M.T., Sementsov Yu.I. Electrophysical and strength characteristics of polychlorotrifluoroethylene filled with carbon nanotubes dispersed in graphene suspensions. Appl. Nanosci. 2023. https://doi.org/10.1007/s13204-023-02902-6. https://doi.org/10.1007/s13204-023-02902-6




DOI: https://doi.org/10.15407/hftp14.04.534

Copyright (©) 2023 Yu. V. Hrebelna, E. M. Demianenko, M. I. Terets, A. G. Grebenyuk, Yu. I. Sementsov, N. V. Sigareva, S. M. Makhno, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.