Chemistry, Physics and Technology of Surface, 2021, 12 (4), 291-300.

Adsorption of cisplatin by the surface of the magnetic sensitive nanocomposite Fe3O4/Al2O3



DOI: https://doi.org/10.15407/hftp12.04.291

P. P. Gorbyk, A. L. Petranovska, N. V. Kusyak, N. M. Korniichuk, A. P. Kusyak, O. I. Oranska, T. V. Kulyk, B. B. Palianytsia, O. A. Dudarko

Abstract


One of the most widely used antitumor chemotherapeutic drugs is “Cisplatin” (active substance - cis-diaminodichloroplatinum), the side effects of which are the cumulative ototoxic, nephrotoxic and neurotoxic effects. The use of drug carrier systems for targeted delivery and adsorbents for extraction, in particular magnetite-carbon nanocomposites, will minimize unwanted toxic effects without reducing the therapeutic effect of cisplatin.

For this purpose, a nanocomposite (NCs) of Fe3O4/Al2O3/С with a carbon surface was synthesized, where a layer of alumina protects magnetite during the pyrolysis of carbohydrates. The synthesized samples were characterized by TEM, XRD, mass spectrometry methods, magnetic properties and specific surface area were studied. It has been found that the used heat treatment mode (T = 500 °С, argon medium) is sufficient for complete carbonization of sucrose and preserves the phase of magnetite which does not lead to deterioration of magnetic characteristics. The results of TEM studies and magnetic measurements indicate the formation of the Fe3O4/Al2O3/С nanocomposite of the core-shell type.

The adsorption of Cisplatin on the surface of NCs Fe3O4/Al2O3/С was performed and the adsorption process dependent on the contact time, pH of the solution and cisplatin concentration was studied. The experimental results of kinetic studies were analyzed for compliance with the theoretical models of Boyd and Morris-Weber, models of pseudo-first and pseudo-second orders. Langmuir and Freundlich isotherm models were used to model adsorption processes. The limiting factor of adsorption is the external diffusion mass transfer processes, which correlates with the calculated parameters of the pseudo-first-order model (r2 = 0.985). The correlation of theoretical and practically obtained values of adsorption capacity indicates the possibility of using the Freundlich model to describe the adsorption of Cisplatin on the surface of Fe3O4/Al2O3/C.


Keywords


magnetosensitive nanocomposites; carbon surface; carbonization; Cisplatin; adsorption

Full Text:

PDF

References


1. Kim E., Lee K., Huh Y.-M., Haam S. Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy. J. Mater. Chem. B. 2013. 1: 729. https://doi.org/10.1039/C2TB00294A

2. Gorbyk P.P., Kusyak N.V., Petranovskaya A.L., Oranskaya E.I., Abramov N.V., Opanashchuk N.M. Synthesis and properties of magnetic nanostructures with carbonized surface. Him. Fiz. Tehnol. Poverhni. 2018. 9(2): 176. [in Ukrainian]. https://doi.org/10.15407/hftp09.02.176

3. Xu Y., Heberlein W.E., Mahmood M., Orza A.I., Karmakar A., Mustafa T., Biris A.R., Casciano D., Biris A.S. Progress in materials for thermal ablation of cancer cells. J. Mater. Chem. 2012. 22(38): 20128. https://doi.org/10.1039/c2jm32792a

4. Zhu M., Wang C., Menga D., Diao G. In situ synthesis of silver nanostructures on magnetic Fe3O4@C core-shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A. 2013. 1(6): 2118. https://doi.org/10.1039/C2TA00669C

5. Wan L., Yan D., Xu X., Li J., Lu T., Gao Y., Yao Y., Pan L. Self-assembled 3D flower-like Fe3O4/C architecture with superior lithium ion storage performance. J. Mater. Chem. A. 2018. 6(48): 24940. https://doi.org/10.1039/C8TA06482B

6. Gorbyk P.P. Nanocomposites with functions of medico-biological nanorobots: synthesis, properties, application. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(2): 323. [in Ukrainian].

7. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures. (Springer, Dordrecht, 2010). https://doi.org/10.1007/978-90-481-2309-4

8. Patent UA 99211. Gorbyk P.P., Petranovska A.L., Turelyk M.P., Turanska S.P., Vasylieva O.A., Chekhun V.F., Luk'yanova N.Yu., Shpak A.P., Korduban O.M. Nanocapsule with nanorobot functions. 2012.

9. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive Nanocomposites with Functions of Medico-Biological Nanorobots: Synthesis and Properties. In: Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. (New York: Nova Science Publishers, 2014).

10. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P., Pylypchuk I.V. Magnetosensitive Nanocomposites with Hierarchical Nanoarchitecture as Biomedical Nanorobots: Synthesis, Properties, and Application. In: Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. (Elsevier, 2016). https://doi.org/10.1016/B978-0-323-41533-0.00010-6

11. Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Magnetosensitive Nanocomposites Based on Cisplatin and Doxorubicin for Application in Oncology. In: Horizons in World Physics. V. 293. (New York, Nova Science Publisher, 2017). P. 1-56.

12. Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5: 275. https://doi.org/10.1007/s40097-015-0159-9

13. Abramov M.V., Petranovska A.L., Kusyak N.V., Kusyak A.P., Opanashchuk N.M., Turanska S.P., Gorbyk P.P., Luk'yanova N.Yu., Chekhun V.F. Synthesis and properties of magnetosensitive nanocomposites and ferrofluids based on magnetite, gemcitabine and HER2 antibody. Funct. Mater. 2020. 27(2): 283.

14. Abramov N.V., Turanska S.P., Kusyak A.P., Petranovska A.L., Gorbyk P.P. Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic fluids based on them. J. Nanostruct. Chem. 2016. 6: 223. https://doi.org/10.1007/s40097-016-0196-z

15. Gorbyk P.P. Biomedical nanocomposites with nanorobot functions: state of research, development, and prospects of practical introduction. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 128. [in Ukrainian]. https://doi.org/10.15407/hftp11.01.128

16. Zhang R., Olin H. Carbon nanomaterials as drug carriers: Real time drug release investigation. Mater. Sci. Eng. C. 2012. 32(5): 1247. https://doi.org/10.1016/j.msec.2012.03.016

17. Selwood P. Magnetochemistry. (Moscow: Publishing house of foreign. Lit., 1958).

18. Petranovskaya A.L., Usov D.G., Abramov M.V, Demchenko Yu.O., Corduban O.M. Modification of the surface of nanocrystalline magnetite with aluminum isopropoxide. Chemistry, Physics and Surface Technology. 2007. 13: 310.

19. Kulik T., Palianytsia B., Larsson M. Catalytic Pyrolysis of Aliphatic Carboxylic Acids into Symmetric Ketones over Ceria-Based Catalysts: Kinetics, Isotope Effect and Mechanism. Catalysts. 2020. 10(179): 1. https://doi.org/10.3390/catal10020179

20. Kulyk K., Zettergren H., Gatchell M., Alexander J.D., Larsson M., Borysenko M., Palianytsia B., Kulik T. Dimethylsilanone Generation from Pyrolysis of Polysiloxanes Filled with Nanosized Silica and Ceria/Silica. ChemPlusChem. 2016. 81(9): 1003. https://doi.org/10.1002/cplu.201600229

21. Dasari S., Tchounwou B.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014. 740: 364. https://doi.org/10.1016/j.ejphar.2014.07.025

22. De Biasi A.R., Villena-Vargas J., Adusumilli P.S. Cisplatin-Induced Antitumor Immunomodulation: A Review of Preclinical and Clinical Evidence. Clin. Cancer Res. 2014. 20(21): 5384. https://doi.org/10.1158/1078-0432.CCR-14-1298

23. Skvortsov A.N. Efficient method of analysis of optical spectra from kinetic studies. Cytology. 2009. 51(3): 229. [in Russian].

24. Boyd G.E., Adamson A.W., Myers L.S. The exchange adsorption of ions from aqueous solution by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 1947. 69(11): 2836. https://doi.org/10.1021/ja01203a066

25. Gupta V.K., Ali I. Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Res. 2001. 35(1): 33. https://doi.org/10.1016/S0043-1354(00)00232-3

26. Ho Y.S., Ng J.C.Y., McKay G. Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Methods. 2000. 29(2): 189. https://doi.org/10.1081/SPM-100100009

27. Douven S., Paez C.A., Gommes C.J. The range of validity of sorption kinetic models. J. Colloid Interface Sci. 2015. 448: 437. https://doi.org/10.1016/j.jcis.2015.02.053




DOI: https://doi.org/10.15407/hftp12.04.291

Copyright (©) 2021 P. P. Gorbyk, A. L. Petranovska, N. V. Kusyak, N. M. Korniichuk, A. P. Kusyak, O. I. Oranska, T. V. Kulyk, B. B. Palianytsia, O. A. Dudarko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.