Chemistry, Physics and Technology of Surface, 2018, 9 (1), 46-63.

The peculiarities of nickel nanostructures formed on interlayer (0001) cleavage surfaces of NiхInSe intercalates



DOI: https://doi.org/10.15407/hftp09.01.046

P. V. Galiy, I. R. Yarovets', T. M. Nenchuk, P. Mazur, A. Ciszewski, O. R. Dveriy

Abstract


The results of an experimental study of nickel nanostructures formation in NiхInSe intercalates are presented. The surface topography and crystallography study data and also electron energy structure of interlayer (0001) cleavage surface of InSe layered crystals, equilibrium thermodynamically intercalated by nickel (Ni3dInSe intercalates) were obtained by methods of scanning tunneling microscopy and scanning tunneling spectroscopy (STM / STS) and also low energy electrons diffraction (LEED). It is determined that nickel is placed in the interlayer gaps of NiхInSe intercalates and, therefore, is observed at the interlayer (0001) cleavage surfaces thus forming Ni3d/InSe(Ni)(0001) nanosystem and occurs in the fine - dispersed phase of nickel metal clusters on the (0001) cleavage surface. The concentrations of nickel metal clusters on the cleavage (0001) surfaces in Ni0.75InSe intercalates are estimated at the level of 0.8–1.25 % by STS and computer analysis method of the current-voltage characteristics in Ni3d/InSe(Ni)(0001) nanosystems.


Keywords


intercalate layered systems; interlayer cleavage (0001) surfaces NiхInSe; surface topography and crystallography; structural-phase studies

Full Text:

PDF (Українська)

References


1. Galiy P.V., Mazur P., Ciszewski A., Yarovets' I.R., Nenchuk T.M., Simon F., Buzhuk Ya. M., Fomenko V.L. The Study of Surfaces' Micro- and Nanostructure on Interlayer Cleavages of InSe Layered Crystals Intercalated by Nickel. J. Nano- Electron. Phys. 2016. 8(1): 01012-1. [in Ukrainian].

2. Galiy P.V., Yarovets' I.R., Simon Frank, Buzhuk Ya.M., Fomenko V.L. Element-Phase Composition of Interlayer Cleavage Surfaces of Inse Layered Crystals Intercalated by Nickel. Herald of Vasyl Stefanyk Precarpathian national university. Series chemistry. 2015. XIX: 32. [in Ukrainian].

3. Oura K., Lifshits V.G., Saranin A.A., Zotov A.V., Katayama M. Introduction to surface physics. (Moscow: Nauka, 2005). [in Russian].

4. Grygorchak I.I. Intercalation: the benefits, problems and perspectives. Phys. Chem. Solid State. 2001. 2(1): 7. [in Ukrainian].

5. Voitovych S.A., Grygorchak I.I., Aksimentyeva O.I., Micov M. Geterophase nanostructures formation based on InSe, their physical properties and possibityties of practical applications. PSE. 2011. 5(3): 222. [in Ukrainian].

6. Stakhira Y.M., Tovstyuk N.K., Fomenko V.L., Tsmots V.M., Shchupliak A.N. Structure and magnetic proper-ties of InSe single crystals intercalated by nickel. Semiconductors. 2011. 45(10): 1258. https://doi.org/10.1134/S1063782611100186

7. Pokladok N.T., Grygorchak I.I., Lukiyanets B.A., Popovich D.I. Structure and physical properties of gallium selenide laser-intercalated with nickel. Phys. Solid State. 2007. 49(4): 715. https://doi.org/10.1134/S1063783407040191

8. Pokladok N.T., Grygorchak I.I., Popovich D.I. Formation of hybrid meso/ nano scale structures with lateral semiconductive and magnetoactive layers and its magnetoimpedance response. PSE. 2009. 7(1–2): 60. [in Ukrainian].

9. Sukhorukov Yu.P., Gizhevkij B.A., Mostovshchikova E.V., Ermakov A.E., Tugushev S.N., Kozlov E.A. Nanocrystalline CuO – material for selective absorbers of solar energy. Russ. Letters to JTF. 2006. 32(3): 81. [in Russian].

10. Stakhira J.M., Buzhuk Ya.M., Demkiv L.S., Tovstyuk N.K., Fomenko V.L. Obtaining and study of structural and magnetic properties of InSe mono- and polycrystals intercalated by nickel. Novi Technol. 2010. 28(2): 68. [in Ukrainian].

11. Kudrynskyy Z.R. Ph.D. (Phys.–math.) Thesis. (Chernivtsi, 2014). [in Ukrainian].

12. Sánchez-Royo J.F., Mu-oz-Matutano Guillermo, Brotons-Gisbert Mauro, Martínez-Pastor Juan P., Segura Alfredo, Cantarero Andrés, Mata Rafael, Canet-Ferrer Josep, Tobias Gerard, Canadell Enric, Marqués-Hueso Jose, Gerardot Brian D. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Research. 2014. 7(10): 1556. https://doi.org/10.1007/s12274-014-0516-x

13. Shen Erica T., Yu Nancy, Park Kenneth T. Low-energy electron diffraction and ultraviolet photoemission spectroscopy study of (1×1) TiO2 (110). (Waco, USA: Baylor Univer., 2009).

14. Galiy P.V., Nenchuk T.M., Yarovets I.R. Topography and Atomic Structure Investigations Of (100) Cleavage Surface of In4Se3 Layered Crystals. J. Nano- Electron. Phys. 2014. 6(2): 02029-1. [in Ukrainian].

15. Galiy P.V. The pecularities of (100) cleavage surface crystallography of In4Se3 layered semiconductor crystals. Him. Fiz. Tehnol. Poverhni. 2014. 5(3): 245. [in Ukrainian].

16. Galiy P.V., Losovuj Ya.B., Nenchuk T.M., Yarovets' I.R. Low-Energy-Electron-Diffraction Structural Studies of (100) Cleavage Surfaces of In4Se3 Layered Crystals. Ukr. J. Phys. 2014. 59(6): 612. https://doi.org/10.15407/ujpe59.06.0612

17. Galiy P.V., Nenchuk T., Ciszewski A., Mazur P., Zuber S., Yarovets' I. Scanning Tunneling Microscopy/Spe-ctroscopy and Low-Energy Electron Diffraction Investigations of GaTe Layered Crystal Cleavage Surface. Metallofiz. Noveishie Tekhnol. 2015. 37(6): 789. https://doi.org/10.15407/mfint.37.06.0789

18. Galiy P.V., Losovyj Y.B., Nenchuk T.M., Ciszewski A., Mazur P., Yarovets' I.R. Surface structure studies of InSe layered crystal intercalated by nickel. In: The XXth International Seminar on Physics and Chemistry of Solids. Prog. and Book of Abst., (Sept. 12-15, 2015, Lviv, Ukraine). P. 49.

19. Man L.I., Imamov R.M., Semiletov S.A. Types of crystal structures of Ga, In and Tl chalcogenides. Kristallografiya. 1976. 21(3): 628.

20. Hayashi Toshiyuki, Ueno Keiji, Saiki Koichiro, Koma Atsushi. Investigation of the growth mechanism of an InSe epitaxial layer on a MoS2 substrate. Journal of Crystal Growth. 2000. 219(1–2): 115.

21. Rigoult J., Rimskya A., Kuhn A. Refinement of the 3R γ-Indium Monoselenide Structure Type. Acta Crystallographica. B. 1980. 36(4): 916. https://doi.org/10.1107/S0567740880004840

22. Bercha D.M., Rushchanskii K.Z., Kharkhalis L.Yu., Sznajder M. Structure similarity and lattice dynamics of InSe and In4Se3 crystals. Condensed Matter Physics. 2000. 3(4(24)): 749. https://doi.org/10.5488/CMP.3.4.749

23. Liu Jianjun. Hydrogen Storage. (Rijeka: Intech, 2012). https://doi.org/10.5772/3207

24. Galiy P., Nenchuk T., Dveriy O., Ciszewski A., Mazur P., Zuber S. Nanoscale STM/STS/ AFM studies of (100) In4Se3 crystal surfaces. Visnyk of the Lviv Univiversity. Series Physics. 2009. 43: 28.

25. Galiy P.V., Nenchuk T.M., Ciszewski A., Mazur P., Buzhuk Ya.M., Yarovets' I.R. Nanostructural studies of (100) surfaces of In4Se3 silver intercalated crystals. Metallofiz. Noveishie Tekhnol. 2013. 35(8): 1031.

26. Klapetek P., Necas D., Christopher A. Gwyddion user guide. – 2004–2007, 2009–2016. http://gwyddion.net.

27. Horcas I., Fernandez R., Gomez-Rodriguez J.M., Colchero J., Gómez-Herrero J., Baro A.M. WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007. 78(1): 013705-8. https://doi.org/10.1063/1.2432410




DOI: https://doi.org/10.15407/hftp09.01.046

Copyright (©) 2018 P. V. Galiy, I. R. Yarovets', T. M. Nenchuk, P. Mazur, A. Ciszewski, O. R. Dveriy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.